Skip to main content

In Silico Protein Motif Discovery and Structural Analysis

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

A wealth of in silico tools is available for protein motif discovery and structural analysis. The aim of this chapter is to collect some of the most common and useful tools and to guide the biologist in their use. A detailed explanation is provided for the use of Distill, a suite of web servers for the prediction of protein structural features and the prediction of full-atom 3D models from a protein sequence. Besides this, we also provide pointers to many other tools available for motif discovery and secondary and tertiary structure prediction from a primary amino acid sequence. The prediction of protein intrinsic disorder and the prediction of functional sites and SLiMs are also briefly discussed. Given that user queries vary greatly in size, scope and character, the trade-offs in speed, accuracy and scale need to be considered when choosing which methods to adopt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The UniProt Consortium (2008) The Universal Protein Resource (UniProt). Nucleic Acids Res 36, D190–D195.

    Article  Google Scholar 

  2. Berman, H., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  3. Aloy, P., Pichaud, M., Russell, R. (2005) Protein complexes: structure prediction challenges for the 21st century. Curr Opin Struct Biol 15, 15–22.

    Article  PubMed  CAS  Google Scholar 

  4. Chothia, C., Lesk, A. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5, 823–826.

    PubMed  CAS  Google Scholar 

  5. Chandonia, J., Brenner, S. (2006) The impact of structural genomics: expectations and outcomes. Science 311, 347.

    Article  PubMed  CAS  Google Scholar 

  6. Moult, J. (2008) Comparative modeling in structural genomics. Structure 16, 14–16.

    Article  PubMed  CAS  Google Scholar 

  7. Altschul, S., Madden, T., Schaffer, A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389.

    Article  PubMed  CAS  Google Scholar 

  8. Baù D, Martin, A., Mooney, C., et al. (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics 7, 402.

    Article  PubMed  Google Scholar 

  9. Pollastri, G., McLysaght, A. (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–1720.

    Article  PubMed  CAS  Google Scholar 

  10. Vullo, A., Walsh, I., Pollastri, G. (2006) A two-stage approach for improved prediction of residue contact maps. BMC Bioinformatics 7, 180.

    Article  PubMed  Google Scholar 

  11. Mooney, C., Vullo, A., Pollastri, G. (2006) Protein structural motif prediction in multidimensional phi–psi space leads to improved secondary structure prediction. J Comput Biol 13, 1489–1502.

    Article  PubMed  CAS  Google Scholar 

  12. Pollastri, G., Martin, A., Mooney, C., Vullo, A. (2007) Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics 8, 201.

    Article  PubMed  Google Scholar 

  13. Vullo, A., Bortolami, O., Pollastri, G., Tosatto, S. (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34, W164.

    Article  PubMed  CAS  Google Scholar 

  14. Walsh, I., Martin, A., Mooney, C., et al. (2009) Ab initio and homology based prediction of protein domains by recursive neural networks. BMC Bioinformatics 10, 195.

    Article  PubMed  Google Scholar 

  15. Walsh, I., Baù, D., Martin, A., et al. (2009) Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct Biol 9, 5.

    Article  PubMed  Google Scholar 

  16. Sims, G., Choi, I., Kim, S. (2005) Protein conformational space in higher order ψ– ϕ maps. Proc Natl Acad Sci USA 18, 618–621.

    Article  Google Scholar 

  17. Mooney, C., Pollastri, G. (2009) Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins 77, 181–190.

    Article  PubMed  CAS  Google Scholar 

  18. Suzek, B., Huang, H., McGarvey, P., et al. (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282.

    Article  PubMed  CAS  Google Scholar 

  19. Montgomerie, S., Sundararaj, S., Gallin, W., Wishart, D. (2006) Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics 7, 301.

    Article  PubMed  Google Scholar 

  20. Cheng, J., Randall, A., Sweredoski, M., Baldi, P. (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33, W72.

    Article  PubMed  CAS  Google Scholar 

  21. Cole, C., Barber, J., Barton, G. (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36, W197–W201.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, D. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.

    Article  PubMed  CAS  Google Scholar 

  23. Adamczak, R., Porollo, A., Meller, J. (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59, 467–475.

    Article  PubMed  Google Scholar 

  24. Moult, J., Fidelis, K., Kryshtafovych, A., et al. (2009) Critical assessment of methods of protein structure prediction – Round VIII. Proteins 77, 1–4.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Y. (2009) I-TASSER: Fully automated protein structure prediction in CASP8. Proteins 77, 100.

    Article  PubMed  CAS  Google Scholar 

  26. Hildebrand, A., Remmert, M., Biegert, A., Söding, J. (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77, 128–132.

    Article  PubMed  CAS  Google Scholar 

  27. Eswar, N., Webb, B., Marti-Renom, M., et al. (2007) Comparative protein structure modeling using Modeller. Curr Protoc Protein Sci 50:2.9.1–2.9.31.

    Google Scholar 

  28. Raman, S., Vernon, R., Thompson, J., et al. (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99.

    Article  PubMed  CAS  Google Scholar 

  29. Kalinina, O., Gelfand, M., Russell, R. (2009) Combining specificity determining and conserved residues improves functional site prediction. BMC Bioinformatics 10, 174.

    Article  PubMed  Google Scholar 

  30. Landau, M., Mayrose, I., Rosenberg, Y., et al. (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33, W299.

    Article  PubMed  CAS  Google Scholar 

  31. Morgan, D., Kristensen, D., Mittelman, D., Lichtarge, O. (2006) ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22, 2049.

    Article  PubMed  CAS  Google Scholar 

  32. Hernandez, M., Ghersi, D., Sanchez, R. (2009) SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37, W413–W416.

    Article  PubMed  CAS  Google Scholar 

  33. Dyson, H., Wright, P. (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6, 197–208.

    Article  PubMed  CAS  Google Scholar 

  34. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433.

    Article  PubMed  CAS  Google Scholar 

  35. Diella, F., Haslam, N., Chica, C., et al. (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13, 6580–6603.

    Article  PubMed  CAS  Google Scholar 

  36. Neduva, V., Russell, R. (2006) Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17, 465–471.

    Article  PubMed  CAS  Google Scholar 

  37. Neduva, V., Russell, R. (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579, 3342–3345.

    Article  PubMed  CAS  Google Scholar 

  38. Puntervoll, P., Linding, R., Gemund, C., et al. (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31, 3625.

    Article  PubMed  CAS  Google Scholar 

  39. Gould, C., Diella, F., Via, A., et al. (2010) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38, D167.

    Article  PubMed  CAS  Google Scholar 

  40. Balla, S., Thapar, V., Verma, S., et al. (2006) Minimotif Miner: a tool for investigating protein function. Nat Methods 3, 175–177.

    Article  PubMed  CAS  Google Scholar 

  41. Rajasekaran, S., Balla, S., Gradie, P., et al. (2009) Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res 37, D185.

    Article  PubMed  CAS  Google Scholar 

  42. Bateman, A., Birney, E., Cerruti, L., et al. (2002) The Pfam protein families database. Nucleic Acids Res 30, 276.

    Article  PubMed  CAS  Google Scholar 

  43. Finn, R., Mistry, J., Tate, J., et al. (2009) The Pfam protein families database. Nucleic Acids Res 36, 281–288.

    Article  Google Scholar 

  44. Letunic, I., Doerks, T., Bork, P. (2008) SMART 6: recent updates and new developments. Nucleic Acids Res 1, 4.

    Google Scholar 

  45. Ashburner, M., Ball, C., Blake, J., et al. (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29.

    Article  PubMed  CAS  Google Scholar 

  46. Edwards, R., Davey, N., Shields, D. (2007) SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PloS One 2, e967.

    Article  PubMed  Google Scholar 

  47. Neduva, V., Linding, R., Su-Angrand, I., et al. (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3, 2090.

    Article  CAS  Google Scholar 

  48. Mészáros B, Simon, I., Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5, 5.

    Article  Google Scholar 

  49. Edwards, R., Davey, N., Shields, D. (2008) CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 24, 1307.

    Article  PubMed  CAS  Google Scholar 

  50. Chica, C., Labarga, A., Gould, C., et al. (2008) A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences. BMC Bioinformatics 9, 229.

    Article  PubMed  Google Scholar 

  51. Dinkel, H., Sticht, H. (2007) A computational strategy for the prediction of functional linear peptide motifs in proteins. Bioinformatics 23, 3297.

    Article  PubMed  CAS  Google Scholar 

  52. Petsalaki, E., Stark, A., García-Urdiales, E., Russell, R. (2009) Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 5, e1000335.

    Article  PubMed  Google Scholar 

  53. Michael, S., Trave, G., Ramu, C., et al. (2008) Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation. Bioinformatics 24, 453.

    Article  PubMed  CAS  Google Scholar 

  54. Diella, F., Chabanis, S., Luck, K., et al. (2009) KEPE—a motif frequently superimposed on sumoylation sites in metazoan chromatin proteins and transcription factors. Bioinformatics 25, 1.

    Article  PubMed  CAS  Google Scholar 

  55. Copley, R. (2005) The EH 1 motif in metazoan transcription factors. BMC Genomics 6, 169.

    Article  PubMed  Google Scholar 

  56. Davey, N., Edwards, R., Shields, D. (2010) Computational identification and analysis of protein short linear motifs. Front Biosci 15, 801–825.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

C.M. is supported by Science Foundation Ireland (SFI) grant 08/IN.1/B1864. ND is supported by an EMBL Interdisciplinary Postdoc (EIPOD) fellowship. CM, GP, IW and AJMM were partly supported by SFI grant 05/RFP/CMS0029, grant RP/2005/219 from the Health Research Board of Ireland, a UCD President’s Award 2004 and UCD Seed Funding 2009 award SF371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mooney, C., Davey, N., Martin, A.J., Walsh, I., Shields, D.C., Pollastri, G. (2011). In Silico Protein Motif Discovery and Structural Analysis. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics