Skip to main content

High-Throughput Analyses and Curation of Protein Interactions in Yeast

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

The yeast Saccharomyces cerevisiae is the model organism in which protein interactions have been most extensively analyzed. The vast majority of these interactions have been characterized by a variety of sophisticated high-throughput techniques probing different aspects of protein association. This chapter summarizes the major techniques, highlights their complementary nature, discusses the data they produce, and highlights some of the biases from which they suffer. A main focus is the key role played by computational methods for processing, analyzing, and validating the large body of noisy data produced by the experimental procedures. It also describes how computational methods are used to extend the coverage and reliability of protein interaction data by integrating information from heterogeneous sources and reviews the current status of literature-curated data on yeast protein interactions stored in specialized databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasch, A. P., Spellman, P. T., Kao, C. M., et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.

    PubMed  CAS  Google Scholar 

  2. Hughes, J. D., Estep, P. W., Tavazoie, S., and Church, G. M. (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214.

    Article  PubMed  CAS  Google Scholar 

  3. Spellman, P. T., Sherlock, G., Zhang, M. Q., et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  4. Harbison, C. T., Gordon, D. B., Lee, T. I., et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, T. I., Rinaldi, N. J., Robert, F., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

    Article  PubMed  CAS  Google Scholar 

  6. Wingender, E., Chen, X., Hehl, R., et al. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316–319.

    Article  PubMed  CAS  Google Scholar 

  7. Huh, W. K., Falvo, J. V., Gerke, L. C., et al. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar, A., Agarwal, S., Heyman, J. A., et al. (2002) Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719.

    Article  PubMed  CAS  Google Scholar 

  9. Collins, S. R., Miller, K. M., Maas, N. L., et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810.

    Article  PubMed  CAS  Google Scholar 

  10. Hillenmeyer, M. E., Fung, E., Wildenhain, J., et al. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365.

    Article  PubMed  CAS  Google Scholar 

  11. Tong, A. H., Lesage, G., Bader, G. D., et al. (2004) Global mapping of the yeast genetic interaction network. Science 303, 808–813.

    Article  PubMed  CAS  Google Scholar 

  12. Belle, A., Tanay, A., Bitincka, L., Shamir, R., and O’Shea, E. K. (2006) Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009.

    Article  PubMed  CAS  Google Scholar 

  13. Ghaemmaghami, S., Huh, W. K., Bower, K., et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741.

    Article  PubMed  CAS  Google Scholar 

  14. Fields, S., and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  15. Stagljar, I., Korostensky, C., Johnsson, N., and te Heesen, S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95, 5187–5192.

    Article  PubMed  CAS  Google Scholar 

  16. Morell, M., Ventura, S., and Aviles, F. X. (2009) Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett. 583, 1684–1691.

    Article  PubMed  CAS  Google Scholar 

  17. Puig, O., Caspary, F., Rigaut, G., et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229.

    Article  PubMed  CAS  Google Scholar 

  18. Gavin, A. C., Aloy, P., Grandi, P., et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.

    Article  PubMed  CAS  Google Scholar 

  19. Krogan, N. J., Cagney, G., Yu, H., et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.

    Article  PubMed  CAS  Google Scholar 

  20. Wodak, S. J., Pu, S., Vlasblom, J., and Seraphin, B. (2009) Challenges and rewards of interaction proteomics. Mol. Cell. Proteomics 8, 3–18.

    Article  PubMed  CAS  Google Scholar 

  21. Collins, S. R., Kemmeren, P., Zhao, X. C., et al. (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450.

    PubMed  CAS  Google Scholar 

  22. Pu, S., Vlasblom, J., Emili, A., Greenblatt, J., and Wodak, S. J. (2007) Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7, 944–960.

    Article  PubMed  CAS  Google Scholar 

  23. Ito, T., Tashiro, K., Muta, S., et al. (2000) Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97, 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  24. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.

    Article  PubMed  CAS  Google Scholar 

  25. Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.

    Article  PubMed  CAS  Google Scholar 

  26. Yu, H., Braun, P., Yildirim, M. A., et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110.

    Article  PubMed  CAS  Google Scholar 

  27. Tarassov, K., Messier, V., Landry, C. R., et al. (2008) An in vivo map of the yeast protein interactome. Science 320, 1465–1470.

    Article  PubMed  CAS  Google Scholar 

  28. Miller, J. P., Lo, R. S., Ben-Hur, A., et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc. Natl. Acad. Sci. USA 102, 12123–12128.

    Article  PubMed  CAS  Google Scholar 

  29. Hastie, T., Tibshirani, R., and Friedman, J. (2001) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer.

    Google Scholar 

  30. Brohee, S., and van Helden, J. (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488.

    Article  PubMed  Google Scholar 

  31. Vlasblom, J., and Wodak, S. J. (2009) Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics 10, 99.

    Article  PubMed  Google Scholar 

  32. Ben-Hur, A., and Noble, W. S. (2006) Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7(Suppl 1), S2.

    Article  PubMed  Google Scholar 

  33. Hart, G. T., Ramani, A. K., and Marcotte, E. M. (2006) How complete are current yeast and human protein-interaction networks? Genome Biol. 7, 120.

    Article  PubMed  Google Scholar 

  34. Mewes, H. W., Frishman, D., Guldener, U., et al. (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34.

    Article  PubMed  CAS  Google Scholar 

  35. Pu, S., Wong, J., Turner, B., Cho, E., and Wodak, S. J. (2009) Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 37, 825–831.

    Article  PubMed  CAS  Google Scholar 

  36. Remy, I., and Michnick, S. W. (2004) Mapping biochemical networks with protein-fragment complementation assays. Methods Mol. Biol. 261, 411–426.

    PubMed  CAS  Google Scholar 

  37. Eyckerman, S., Verhee, A., der Heyden, J. V., et al. (2001) Design and application of a cytokine-receptor-based interaction trap. Nat. Cell Biol. 3, 1114–1119.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, H., Kakaradov, B., Collins, S. R., et al. (2009) A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Mol. Cell. Proteomics 8, 1361–1381.

    Article  PubMed  CAS  Google Scholar 

  39. Ashburner, M., Ball, C. A., Blake, J. A., et al. (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29.

    Article  PubMed  CAS  Google Scholar 

  40. Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1, 349–356.

    Article  PubMed  CAS  Google Scholar 

  41. Deng, M., Mehta, S., Sun, F., and Chen, T. (2002) Inferring domain-domain interactions from protein-protein interactions. Genome Res. 12, 1540–1548.

    Article  PubMed  CAS  Google Scholar 

  42. Gentleman, R., and Huber, W. (2007) Making the most of high-throughput protein-interaction data. Genome Biol. 8, 112.

    Article  PubMed  Google Scholar 

  43. Hakes, L., Pinney, J. W., Robertson, D. L., and Lovell, S. C. (2008) Protein-protein interaction networks and biology-what’s the connection? Nat. Biotechnol. 26, 69–72.

    Article  PubMed  CAS  Google Scholar 

  44. Huang, H., Jedynak, B. M., and Bader, J. S. (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput. Biol. 3, e214.

    Article  PubMed  Google Scholar 

  45. Stumpf, M. P., Thorne, T., de Silva, E., et al. (2008) Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA 105, 6959–6964.

    Article  PubMed  CAS  Google Scholar 

  46. Hart, G. T., Lee, I., and Marcotte, E. R. (2007) A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8, 236.

    Article  PubMed  Google Scholar 

  47. Qiu, J., and Noble, W. S. (2008) Predicting co-complexed protein pairs from heterogeneous data. PLoS Comput. Biol. 4, e1000054.

    Article  PubMed  Google Scholar 

  48. Reguly, T., Breitkreutz, A., Boucher, L., et al. (2006) Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11.

    Article  PubMed  Google Scholar 

  49. Goldberg, D. S., and Roth, F. P. (2003) Assessing experimentally derived interactions in a small world. Proc. Natl. Acad. Sci. USA 100, 4372–4376.

    Article  PubMed  CAS  Google Scholar 

  50. Qi, Y., Suhail, Y., Lin, Y. Y., Boeke, J. D., and Bader, J. S. (2008) Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Res. 18, 1991–2004.

    Article  PubMed  CAS  Google Scholar 

  51. Boone, C., Bussey, H., and Andrews, B. J. (2007) Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449.

    Article  PubMed  CAS  Google Scholar 

  52. Pan, X., Yuan, D. S., Ooi, S., et al. (2007) dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae. Methods 41, 206–221.

    Article  PubMed  CAS  Google Scholar 

  53. Tong, A. H. Y., and Boone, C. (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313, 171–192.

    PubMed  CAS  Google Scholar 

  54. Costanzo, M., and Boone, C. (2009) SGAM: an array-based approach for high-resolution genetic mapping in Saccharomyces cerevisiae. Methods Mol. Biol. 548, 37–53.

    Article  PubMed  CAS  Google Scholar 

  55. Schuldiner, M., Collins, S. R., Thompson, N. J., et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.

    Article  PubMed  CAS  Google Scholar 

  56. Segre, D., Deluna, A., Church, G. M., and Kishony, R. (2005) Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83.

    PubMed  CAS  Google Scholar 

  57. Kelley, R., and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566.

    Article  PubMed  CAS  Google Scholar 

  58. Bandyopadhyay, S., Kelley, R., Krogan, N. J., and Ideker, T. (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065.

    Article  PubMed  Google Scholar 

  59. Ulitsky, I., Shlomi, T., Kupiec, M., and Shamir, R. (2008) From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol. Syst. Biol. 4, 209.

    Article  PubMed  Google Scholar 

  60. Prelic, A., Bleuler, S., Zimmermann, P., et al. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129.

    Article  PubMed  CAS  Google Scholar 

  61. Pu, S., Ronen, K., Vlasblom, J., Greenblatt, J., and Wodak, S. J. (2008) Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics 24, 2376–2383.

    Article  PubMed  CAS  Google Scholar 

  62. Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539.

    Article  PubMed  CAS  Google Scholar 

  63. Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., and Eisenberg, D. (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305.

    Article  PubMed  CAS  Google Scholar 

  64. von Mering, C., Jensen, L. J., Snel, B., et al. (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437.

    Article  Google Scholar 

  65. Hoffmann, R., Krallinger, M., Andres, E., Tamames, J., Blaschke, C., and Valencia, A. (2005) Text mining for metabolic pathways, signaling cascades, and protein networks. Sci. STKE, 283, pe21.

    Google Scholar 

  66. Cusick, M. E., Yu, H., Smolyar, A., et al. (2009) Literature-curated protein interaction datasets. Nat. Methods 6, 39–46.

    Article  PubMed  CAS  Google Scholar 

  67. Salwinski, L., Licata, L., Winter, A., et al. (2009) Recurated protein interaction datasets. Nat. Methods 6, 860–861.

    Article  PubMed  CAS  Google Scholar 

  68. Orchard, S., Jones, P., Taylor, C., et al. (2007) Proteomic data exchange and storage: the need for common standards and public repositories. Methods Mol. Biol. 367, 261–270.

    PubMed  CAS  Google Scholar 

  69. Chaurasia, G., Malhotra, S., Russ, J., et al. (2009) UniHI 4: new tools for query, analysis and visualization of the human protein-protein interactome. Nucleic Acids Res. 37, D657–D660.

    Article  PubMed  CAS  Google Scholar 

  70. Jayapandian, M., Chapman, A., Tarcea, V. G., et al. (2007) Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids Res. 35, D566–D571.

    Article  PubMed  CAS  Google Scholar 

  71. Kamburov, A., Wierling, C., Lehrach, H., and Herwig, R. (2009) ConsensusPathDB – a database for integrating human functional interaction networks. Nucleic Acids Res. 37, D623–D628.

    Article  PubMed  CAS  Google Scholar 

  72. Prieto, C., and De Las Rivas, J. (2006) APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res. 34, W298–W302.

    Article  PubMed  CAS  Google Scholar 

  73. Razick, S., Magklaras, G., and Donaldson, I. M. (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics, 9, 405.

    Article  PubMed  Google Scholar 

  74. Bader, G. D., Betel, D., and Hogue, C. W. (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248–250.

    Article  PubMed  CAS  Google Scholar 

  75. Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., et al. (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 36, D646–D650.

    Article  PubMed  CAS  Google Scholar 

  76. Kerrien, S., Alam-Faruque, Y., Aranda, B., et al. (2007) IntAct – open source resource for molecular interaction data. Nucleic Acids Res. 35, D561–D565.

    Article  PubMed  CAS  Google Scholar 

  77. Prasad, T. S., Kandasamy, K., and Pandey, A. (2009) Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol. Biol. 577, 67–79.

    Article  PubMed  CAS  Google Scholar 

  78. Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., et al. (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572–D574.

    Article  PubMed  CAS  Google Scholar 

  79. Guldener, U., Munsterkotter, M., Oesterheld, M., et al. (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res. 34, D436–D441.

    Article  PubMed  Google Scholar 

  80. Pagel, P., Kovac, S., Oesterheld, M., et al. (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21, 832–834.

    Article  PubMed  CAS  Google Scholar 

  81. Kim, P. M., Lu, L. J., Xia, Y., and Gerstein, M. B. (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 314, 1938–1941.

    Article  PubMed  CAS  Google Scholar 

  82. Cochran, A. G. (2001) Protein-protein interfaces: mimics and inhibitors. Curr. Opin. Chem. Biol. 5, 654–659.

    Article  PubMed  CAS  Google Scholar 

  83. Wepf, A., Glatter, T., Schmidt, A., Aebersold, R., and Gstaiger, M. (2009) Quantitative interaction proteomics using mass spectrometry. Nat. Methods 6, 203–205.

    Article  PubMed  CAS  Google Scholar 

  84. Hernandez, H., Dziembowski, A., Taverner, T., Seraphin, B., and Robinson, C. V. (2006) Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep. 7, 605–610.

    PubMed  CAS  Google Scholar 

  85. Kamal, J. K., and Chance, M. R. (2008) Modeling of protein binary complexes using structural mass spectrometry data. Protein Sci. 17, 79–94.

    Article  PubMed  CAS  Google Scholar 

  86. Janin, J., and Wodak, S. (2007) The third CAPRI assessment meeting Toronto, Canada, April 20–21, 2007. Structure 15, 755–759.

    Article  PubMed  CAS  Google Scholar 

  87. Lensink, M.F., Mendez, R., and Wodak, S. J. (2007) Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins 69, 704–718.

    Article  PubMed  CAS  Google Scholar 

  88. Ben-Hur, A., Ong, C. S., Sonnenburg, S., Scholkopf, B., and Ratsch, G. (2008) Support vector machines and kernels for computational biology. PLoS Comput. Biol. 4, e1000173.

    Article  PubMed  Google Scholar 

  89. Noble, W. S. (2006) What is a support vector machine? Nat. Biotechnol. 24, 1565–1567.

    Article  PubMed  CAS  Google Scholar 

  90. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002) Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422.

    Article  Google Scholar 

  91. Batada, N. N., Reguly, T., Breitkreutz, A., et al. (2007) Still stratus not altocumulus: further evidence against the date/party hub distinction. PLoS Biol. 5, e154.

    Article  PubMed  Google Scholar 

  92. Lord, P. W., Stevens, R. D., Brass, A., and Goble, C. A. (2003) Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brian Turner and Andrei Turinsky for their work on the consolidation of protein interaction data and for help with iRefWeb. Funding is acknowledged from the Canadian Institutes of Health Research (CIHR MOP#82940), the Ontario Research Fund, and the SickKids Foundation. SJW is Canada Research Chair, Tier 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshana J. Wodak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Wodak, S.J., Vlasblom, J., Pu, S. (2011). High-Throughput Analyses and Curation of Protein Interactions in Yeast. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics