Skip to main content

Enabling Technologies for Yeast Proteome Analysis

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Whilst the study of yeast genomes and transcriptomes is in an advanced state, there is still much to learn about the resulting proteins in terms of cataloging, characterization of post-translational modifications, turnover, and the dynamics of sub-cellular localization and interactions. Analysis of the transcripts gives little insight into function or diversity as changes in RNA levels do not always correlate with the resulting protein abundance. A number of global and targeted attempts have been made to catalog and characterize the yeast proteome and we describe here the methods used to gain a greater understanding of the yeast proteome. This comprehensive review also describes future approaches that will aid completion in identifying and characterizing the remaining 20% of the undetermined yeast proteome as well as giving new insight into protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.

    PubMed  CAS  Google Scholar 

  2. Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124.

    Article  PubMed  CAS  Google Scholar 

  3. Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., and Aebersold, R. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806.

    Article  PubMed  CAS  Google Scholar 

  4. Ghaemmaghami, S., Huh, W.-K., Bower, K., et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741.

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka, K., Waki, H., Ido, Y., et al. (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Comm. Mass Spectrom. 2, 151–153.

    Article  CAS  Google Scholar 

  6. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  7. Steen, H., and Mann, M. (2004) The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell. Biol. 5, 699–711.

    Article  PubMed  CAS  Google Scholar 

  8. Gstaiger, M., and Aebersold, R. (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 10, 617–627.

    Article  PubMed  CAS  Google Scholar 

  9. Klose, J., Nock, C., Herrmann, M., et al. (2002) Genetic analysis of the mouse brain proteome. Nat. Genet. 30, 385–393.

    Article  PubMed  CAS  Google Scholar 

  10. Lilley, K. S., and Dupree, P. (2006) Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot. 57, 1493–1499.

    Article  PubMed  CAS  Google Scholar 

  11. Washburn, M. P., Wolters, D., and Yates, J. R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  12. Lilley, K. S., Razzaq, A., and Dupree, P. (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr. Opin. Chem. Biol. 6, 46–50.

    Article  PubMed  CAS  Google Scholar 

  13. Kang, Y., Techanukul, T., Mantalaris, A., and Nagy, J. M. (2009) Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics. J. Proteome Res. 8, 1077–1084.

    Article  PubMed  CAS  Google Scholar 

  14. Lilley, K. S., and Friedman, D. B. (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Exp. Rev. Proteomics 1, 401–409.

    Article  CAS  Google Scholar 

  15. Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  16. Valerius, O., Kleinschmidt, M., Rachfall, N., et al. (2007) The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol. Cell. Proteomics 6, 1968–1979.

    Article  PubMed  CAS  Google Scholar 

  17. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., et al. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502.

    Article  PubMed  CAS  Google Scholar 

  18. Silva, J. C., Denny, R., Dorschel, C., et al. (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol. Cell. Proteomics 5, 589–607.

    PubMed  CAS  Google Scholar 

  19. Mosley, A. L., Florens, L., Wen, Z., and Washburn, M. P. (2009) A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus. J. Proteomics 72, 110–120.

    Article  PubMed  CAS  Google Scholar 

  20. Foss, E. J., Radulovic, D., Shaffer, S. A., et al. (2007) Genetic basis of proteome variation in yeast. Nat. Genet. 39, 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  21. Usaite, R., Wohlschlegel, J., Venable, J. D., et al. (2008) Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: the comparison of two quantitative methods. J. Proteome Res. 7, 266–275.

    Article  PubMed  CAS  Google Scholar 

  22. Karp, N. A., and Lilley, K. S. (2007) Design and analysis issues in quantitative proteomics studies. Proteomics 7, 42–50.

    Article  PubMed  Google Scholar 

  23. Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  24. Conrads, T. P., Alving, K., Veenstra, T. D., et al. (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and N-15- metabolic labeling. Anal. Chem. 73, 2132–2139.

    Article  PubMed  CAS  Google Scholar 

  25. de Godoy, L. M. F., Olsen, J. V., Cox, J., et al. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254.

    Article  PubMed  Google Scholar 

  26. de Groot, M. J. L., Daran-Lapujade, P., van Breukelen, B., et al. (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153, 3864–3878.

    Article  PubMed  Google Scholar 

  27. Wang, J., Gutierrez, P., Edwards, N., and Fenselau, C. (2007) Integration of O-18 labeling and solution isoelectric focusing in a shotgun analysis of mitochondrial proteins. J. Proteome Res. 6, 4601–4607.

    Article  PubMed  CAS  Google Scholar 

  28. Ross, P. L., Huang, Y. L. N., Marchese, J. N., et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  29. Pham, T. K., Chong, P. K., Gan, C. S., and Wright, P. C. (2006) Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J. Proteome Res. 5, 3411–3419.

    Article  PubMed  CAS  Google Scholar 

  30. Pham, T. K., and Wright, P. C. (2008) The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J. Proteome Res. 7, 4766–4774.

    Article  PubMed  CAS  Google Scholar 

  31. Lin, F. M., Tan, Y., and Yuan Y. J. (2009) Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 9, 5471–5483.

    Article  PubMed  CAS  Google Scholar 

  32. Castrillo, J. I., Zeef, L. A., Hoyle, D. C., et al. (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4.

    Article  PubMed  Google Scholar 

  33. Mirzaei, H., McBee, J. K., Watts, J., and Aebersold, R. (2008) Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol. Cell. Proteomics 7, 813–823.

    PubMed  CAS  Google Scholar 

  34. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  35. Rivers, J., Simpson, D. M., Robertson, D. H. L., Gaskell, S. J., and Beynon, R. J. (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol. Cell. Proteomics 6, 1416–1427.

    Article  PubMed  CAS  Google Scholar 

  36. Brun, V., Dupuis, A., Adrait, A., et al. (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol. Cell. Proteomics 6, 2139–2149.

    Article  PubMed  CAS  Google Scholar 

  37. Silva, J. C., Gorenstein, M. V., Li, G.-Z., Vissers, J. P. C., and Geromanos, S. J. (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 5, 144–156.

    PubMed  CAS  Google Scholar 

  38. Anderson, L., and Hunter, C. L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics 5, 573–588.

    PubMed  CAS  Google Scholar 

  39. Mead, J. A., Bianco, L., Ottone, V., et al. (2009) MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol. Cell. Proteomics 8, 696–705.

    Article  PubMed  CAS  Google Scholar 

  40. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A., and White, F. M. (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 104, 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  41. Larsen, M. R., Trelle, M. B., Thingholm, T. E., and Jensen, O. N. (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40, 790–798.

    Article  PubMed  CAS  Google Scholar 

  42. Creasy, D. M., and Cottrell, J. S. (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2, 1426–1434.

    Article  PubMed  CAS  Google Scholar 

  43. Engstrom, L. (1958) Studies of phosphoprotein functions. III. The effect of some inhibitors of oxidative phosphorylation on the incorporation rate of 32P into trichloroacetic acid-soluble nucleotides and protein phosphorylserine of baker’s yeast. Acta Soc. Med. Ups. 63, 149–154.

    PubMed  CAS  Google Scholar 

  44. Kotyk, A. (1958) Effect of potassium ions on phosphorylation processes in Saccharomyces cerevisiae. Biokhimiia 23, 737–750.

    PubMed  CAS  Google Scholar 

  45. Stoppani, A. O., and De Favelukes, S. L. (1957) Effect of certain inhibitors of oxidative phosphorylation on the fixation of carbon dioxide by Saccharomyces cerevisiae. Rev. Soc. Argent. Biol. 33, 252–256.

    PubMed  CAS  Google Scholar 

  46. Bodenmiller, B., Campbell, D., Gerrits, B., et al. (2008) PhosphoPep-a database or protein phosphorylation sites in model organisms. Nat. Biotechnol. 26, 1339–1340.

    Article  PubMed  CAS  Google Scholar 

  47. Biemann, K., and Scoble, H. A. (1987) Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237, 992–998.

    Article  PubMed  CAS  Google Scholar 

  48. Beltrao, P., Trinidad, J. C., Fiedler, D., et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 7, e1000134.

    Article  PubMed  Google Scholar 

  49. Holt, L. J., Tuch, B. B., Villen, J., Johnson, A. D., Gygi, S. P., and Morgan, D. O. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686.

    Article  PubMed  CAS  Google Scholar 

  50. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., and Hunt, D. F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533.

    Article  PubMed  CAS  Google Scholar 

  51. Chi, A., Huttenhower, C., Geer, L. Y., et al. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA 104, 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  52. Swaney, D. L., McAlister, G. C., and Coon, J. J. (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5, 959–964.

    Article  PubMed  CAS  Google Scholar 

  53. Tanner, W., and Lehle, L. (1987) Protein glycosylation in yeast. Biochim. Biophys. Acta 906, 81–99.

    PubMed  CAS  Google Scholar 

  54. Herscovics, A., and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB J. 7, 540–550.

    PubMed  CAS  Google Scholar 

  55. Lehle, L., Strahl, S., and Tanner, W. (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew. Chem. Int. Ed. Engl. 45, 6802–6818.

    Article  PubMed  CAS  Google Scholar 

  56. Kaji, H., Saito, H., Yamauchi, Y., et al. (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667–672.

    Article  PubMed  CAS  Google Scholar 

  57. Schulz, B. L., and Aebi, M. (2009) Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell. Proteomics 8, 357–364.

    PubMed  CAS  Google Scholar 

  58. Lee, B. K., Jung, K. S., Son, C., et al. (2007) Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p. Protein Expr. Purif. 56, 62–71.

    Article  PubMed  CAS  Google Scholar 

  59. Lee, K. K., and Workman, J. L. (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295.

    Article  PubMed  CAS  Google Scholar 

  60. Lin, Y. Y., Lu, J. Y., Zhang, J., et al. (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136, 1073–1084.

    Article  PubMed  CAS  Google Scholar 

  61. Choudhary, C., Kumar, C., Gnad, F., et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840.

    Article  PubMed  CAS  Google Scholar 

  62. Smith, K. T., and Workman, J. L. (2009) Introducing the acetylome. Nat. Biotechnol. 27, 917–919.

    Article  PubMed  CAS  Google Scholar 

  63. Yang, L., Tu, S., Ren, C., et al. (2010) Unambiguous determination of isobaric histone modifications by reversed-phase retention time and high-mass accuracy. Anal. Biochem. 396, 13–22.

    Article  PubMed  CAS  Google Scholar 

  64. Sprung, R., Chen, Y., Zhang, K., et al. (2008) Identification and validation of eukaryotic aspartate and glutamate methylation in proteins. J. Proteome Res. 7, 1001–1006.

    Article  PubMed  CAS  Google Scholar 

  65. Radivojac, P., Vacic, V., Haynes, C., et al. (2010) Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78, 365–380.

    Article  PubMed  CAS  Google Scholar 

  66. Hitchcock, A. L., Auld, K., Gygi, S. P., and Silver, P. A. (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. USA 100, 12735–12740.

    Article  PubMed  CAS  Google Scholar 

  67. Peng, J., Schwartz, D., Elias, J. E., et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926.

    Article  PubMed  CAS  Google Scholar 

  68. Andersen, J. S., Matic, I., and Vertegaal, A. C. (2009) Identification of SUMO target proteins by quantitative proteomics. Methods Mol. Biol. 497, 19–31.

    Article  PubMed  CAS  Google Scholar 

  69. Wohlschlegel, J. A. (2009) Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry. Methods Mol. Biol. 497, 33–49.

    Article  PubMed  CAS  Google Scholar 

  70. Kroetz, M. B., and Hochstrasser, M. (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol. Biol. 497, 107–120.

    Article  PubMed  CAS  Google Scholar 

  71. Ulrich, H. D. (2009) SUMO Protocols, Vol. 497. New York, NY: Humana Press.

    Book  Google Scholar 

  72. Fields, S., and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  73. Giot, L., Bader, J. S., Brouwer, C., et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  74. Melcher, K., and Johnston, S. A. (1995) GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15, 2839–2848.

    PubMed  CAS  Google Scholar 

  75. Howson, R., Huh, W. K., Ghaemmaghami, S., et al. (2005) Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp. Funct. Genomics 6, 2–16.

    Article  PubMed  CAS  Google Scholar 

  76. Rees, J. S., Lowe, N., Armean, I. M., Roote, J., Johnson, G., Drummond, E., Spriggs, H., Ryder, E., Russell, S., Johnston, D. S., and Lilley, K. S. (2011) In vivo analysis of proteomes and interactomes using parallel affinity capture (iPAC) coupled to mass spectrometry. Mol. Cell. Proteomics 10, M110.002386. Epub 2011 Mar 29.

    Google Scholar 

  77. Huh, W.-K., Falvo, J. V., Gerke, L. C., et al. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  78. Premsler, T., Zahedi, R. P., Lewandrowski, U., and Sickmann, A. (2009) Recent advances in yeast organelle and membrane proteomics. Proteomics 9, 4731–4743.

    Article  PubMed  CAS  Google Scholar 

  79. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., and Sickmann, A. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5, 1543–1554.

    Article  PubMed  CAS  Google Scholar 

  80. Lee, M. C. S., Miller, E. A., Goldberg, J., Orci, L., and Schekman, R. (2004) Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123.

    Article  PubMed  CAS  Google Scholar 

  81. Insenser, M., Nombela, C., Molero, G., and Gil, C. (2006) Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics 6, S74–S81.

    Article  PubMed  Google Scholar 

  82. Wiederhold, E., Gandhi, T., Permentier, H. P., Breitling, R., Poolman, B., and Slotboom, D. J. (2009) The yeast vacuolar membrane proteome. Mol. Cell. Proteomics 8, 380–392.

    PubMed  CAS  Google Scholar 

  83. de Duve, C. (1971) Tissue fractionation. J. Cell. Biol. 50, 20D–55D.

    Article  PubMed  Google Scholar 

  84. Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., and Mann, M. (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574.

    Article  PubMed  CAS  Google Scholar 

  85. Foster, L. J., de Hoog, C. L., Zhang, Y. L., et al. (2006) A mammalian organelle map by protein correlation profiling. Cell 125, 187–199.

    Article  PubMed  CAS  Google Scholar 

  86. Wiese, S., Gronemeyer, T., Ofman, R., et al. (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteomics 6, 2045–2057.

    Article  PubMed  CAS  Google Scholar 

  87. Dunkley, T. P. J., Hester, S., Shadforth, I. P., et al. (2006) Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 103, 6518–6523.

    Article  PubMed  CAS  Google Scholar 

  88. Sadowski, P. G., Groen, A. J., Dupree, P., and Lilley, K., S. (2008) Sub-cellular localization of membrane proteins. Proteomics 8, 3991–4011.

    Google Scholar 

  89. Tan, D. J. L., Dvinge, H., Christoforou, A., Bertone, P., Martinez Arias, A., and Lilley, K. S. (2009) Mapping organelle proteins and protein complexes in Drosophila melanogaster. J. Proteome Res. 8, 2667–2678.

    Article  PubMed  CAS  Google Scholar 

  90. Hall, S. L., Hester, S., Griffin, J. L., Lilley, K. S., and Jackson, A. P. (2009) The organelle proteome of the DT40 lymphocyte cell line. Mol. Cell. Proteomics 8, 1295–1305.

    Article  PubMed  CAS  Google Scholar 

  91. Belle, A., Tanay, A., Bitincka, L., Shamir, R., and O’Shea, E. K. (2006) Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009.

    Article  PubMed  CAS  Google Scholar 

  92. Pratt, J. M., Petty, J., Riba-Garcia, I., et al. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591.

    Article  PubMed  CAS  Google Scholar 

  93. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  94. Schwanhäusser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209.

    Article  PubMed  Google Scholar 

  95. Hermjakob, H., Montecchi-Palazzi, L., Bader, G., et al. (2004) The HUPO PSI’s molecular interaction format – a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177–183.

    Article  PubMed  CAS  Google Scholar 

  96. Kerrien, S., Orchard, S., Montecchi-Palazzi, L., et al. (2007) Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol. 5, 44.

    Article  PubMed  Google Scholar 

  97. Orchard, S., Salwinski, L., Kerrien, S., et al. (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat. Biotechnol. 25, 894–898.

    Article  PubMed  CAS  Google Scholar 

  98. Karp, N. A., McCormick, P. S., Russell, M. R., and Lilley, K. S. (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol. Cell. Proteomics 6, 1354–1364.

    Article  PubMed  CAS  Google Scholar 

  99. MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  100. Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  101. Gupta, R., Kus, B., Fladd, C., et al. (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol. Syst. Biol. 3, 116.

    Article  PubMed  Google Scholar 

  102. Second, T. P., Blethrow, J. D., Schwartz, J. C., et al. (2009) Dual-pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures. Anal. Chem. 81, 7757–7765.

    Article  PubMed  Google Scholar 

  103. Wallace, A., Castro-Perez, J., Major, H., et al. (2009) Synapt G2: Breakthrough quantitative and qualitative performance for UPLC/MS and MS/MS (MSE) applications, p Technical Note, Water Corporation, Milford, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Lilley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Rees, J., Lilley, K. (2011). Enabling Technologies for Yeast Proteome Analysis. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics