Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures

  • Pamela J. Lein
  • Christopher D. Barnhart
  • Isaac N. Pessah
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 758)

Abstract

A major advantage of hippocampal slice preparations is that the cytoarchitecture and synaptic circuits of the hippocampus are largely retained. In neurotoxicology research, organotypic hippocampal slices have mostly been used as acute ex vivo preparations for investigating the effects of neurotoxic chemicals on synaptic function. More recently, hippocampal slice cultures, which can be maintained for several weeks to several months in vitro, have been employed to study how neurotoxic chemicals influence the structural and functional plasticity in hippocampal neurons. This chapter provides protocols for preparing hippocampal slices to be used acutely for electrophysiological measurements using glass microelectrodes or microelectrode arrays or to be cultured for morphometric assessments of individual neurons labeled using biolistics.

Key words

Acute hippocampal slice Biolistics Electrophysiology Hippocampal slice culture Microelectrode arrays Morphometry 

References

  1. 1.
    Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13(6): 1263–8PubMedCrossRefGoogle Scholar
  2. 2.
    Galimberti I, Gogolla N, Alberi S, Santos AF, Muller D, Caroni P (2006) Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron 50(5): 749–63PubMedCrossRefGoogle Scholar
  3. 3.
    Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44(5): 759–67PubMedCrossRefGoogle Scholar
  4. 4.
    Coltman BW, Earley EM, Shahar A, Dudek FE, Ide CF (1995) Factors influencing mossy fiber collateral sprouting in organotypic slice cultures of neonatal mouse hippocampus. J Comp Neurol 362(2): 209–22PubMedCrossRefGoogle Scholar
  5. 5.
    Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4(4): 329–42PubMedCrossRefGoogle Scholar
  6. 6.
    De Simoni A, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1(3): 1439–45PubMedCrossRefGoogle Scholar
  7. 7.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2): 173–82PubMedCrossRefGoogle Scholar
  8. 8.
    O’Brien JA, Lummis SC (2006) Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun. Nat Protoc 1(3): 1517–21PubMedCrossRefGoogle Scholar
  9. 9.
    O’Brien JA, Lummis SC (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1(2): 977–81PubMedCrossRefGoogle Scholar
  10. 10.
    Kasri NN, Govek EE, Van Aelst L (2008) Characterization of oligophrenin-1, a RhoGAP lost in patients affected with mental retardation: lentiviral injection in organotypic brain slice cultures. Methods Enzymol 439: 255–66PubMedCrossRefGoogle Scholar
  11. 11.
    Haas HL, Schaerer B, Vosmansky M (1979) A simple perfusion chamber for the study of nervous tissue slices in vitro. J Neurosci Methods 1(4): 323–5PubMedCrossRefGoogle Scholar
  12. 12.
    Teyler TJ (1987) The introduction of brain slices to neurophysiology. In: Brain Slices: Fundamentals, Applications and Implications, (Schurr A, Teyler TJTseng MT, ed), pp. 1–9. Basel: Karger.Google Scholar
  13. 13.
    Wong PW, Joy RM, Albertson TE, Schantz SL, Pessah IN (1997) Ortho-substituted 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) alters rat hippocampal ryanodine receptors and neuroplasticity in vitro: evidence for altered hippocampal function. Neurotoxicology 18(2): 443–56PubMedGoogle Scholar
  14. 14.
    An JH, Su Y, Radman T, Bikson M (2008) Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Res 1218: 77–86PubMedCrossRefGoogle Scholar
  15. 15.
    Kirchner A, Veliskova J, Velisek L (2006) Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur J Neurosci 23(6): 1512–22PubMedCrossRefGoogle Scholar
  16. 16.
    Cater HL, Chandratheva A, Benham CD, Morrison B, 3rd, Sundstrom LE (2003) Lactate and glucose as energy substrates ­during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87(6): 1381–90PubMedCrossRefGoogle Scholar
  17. 17.
    Schurr A, Payne RS, Miller JJ, Rigor BM (1999) Study of cerebral energy metabolism using the rat hippocampal slice preparation. Methods 18(2): 117–26PubMedCrossRefGoogle Scholar
  18. 18.
    Schurr A, West CA, Rigor BM (1989) Electrophysiology of energy metabolism and neuronal function in the hippocampal slice preparation. J Neurosci Methods 28(1–2): 7–13PubMedCrossRefGoogle Scholar
  19. 19.
    Gureviciene I, Puolivali J, Pussinen R, Wang J, Tanila H, Ylinen A (2003) Estrogen treatment alleviates NMDA-antagonist induced hippocampal LTP blockade and cognitive deficits in ovariectomized mice. Neurobiol Learn Mem 79(1): 72–80PubMedCrossRefGoogle Scholar
  20. 20.
    Selbach O, Bohla C, Barbara A, Doreulee N, Eriksson KS, Sergeeva OA, Haas HL (2009) Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol (Oxf)Google Scholar
  21. 21.
    Agmon A, Wells JE (2003) The role of the hyperpolarization-activated cationic current I(h) in the timing of interictal bursts in the neonatal hippocampus. J Neurosci 23(9): 3658–68PubMedGoogle Scholar
  22. 22.
    Krassioukov AV, Ackery A, Schwartz G, Adamchik Y, Liu Y, Fehlings MG (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res Brain Res Protoc 10(2): 60–8PubMedCrossRefGoogle Scholar
  23. 23.
    Leutgeb JK, Frey JU, Behnisch T (2003) LTP in cultured hippocampal-entorhinal cortex slices from young adult (P25-30) rats. J Neurosci Methods 130(1): 19–32PubMedCrossRefGoogle Scholar
  24. 24.
    Tom VJ, Doller CM, Malouf AT, Silver J (2004) Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter. J Neurosci 24(42): 9282–90PubMedCrossRefGoogle Scholar
  25. 25.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2): 193–9PubMedCrossRefGoogle Scholar
  26. 26.
    Croning MD, Haddad GG (1998) Comparison of brain slice chamber designs for investigations of oxygen deprivation in vitro. J Neurosci Methods 81(1–2): 103–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pamela J. Lein
    • 1
  • Christopher D. Barnhart
  • Isaac N. Pessah
  1. 1.Department of Molecular Biosciences, School of Veterinary Medicine and Center for Children’s Environmental HealthUniversity of CaliforniaDavisUSA

Personalised recommendations