Skip to main content

In Vitro Models to Study the Blood Brain Barrier

  • Protocol
  • First Online:
In Vitro Neurotoxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 758))

Abstract

The blood brain barrier regulates the transport of chemicals from entering and leaving the brain. Brain capillaries establish the barrier and restrict transport into the brain by providing a physical and chemical barrier. The physical barrier is due to tight membrane junctions separating the capillary endothelial cells resulting in limited paracellular transport. The chemical barrier is due to the expression of multidrug transporters that mediate the efflux of a broad range of hydrophobic chemicals. Because of the unusual nutrient demands of the brain, this limited permeability is compensated by the expression of a large number of transporters that are responsive to the metabolic demands of the brain. Consequently, the blood brain barrier indirectly regulates brain function by directly controlling the uptake of nutrients. Two widely used methods for studying the blood brain are a cell culture model using rat, pig, or cow brain endothelial cells and isolated microvessels. The cell culture model is more popular likely because it is easier to use and less costly compared to isolated microvessels. In some laboratories, brain endothelial cells are cocultured with astrocyte- or astroglial-conditioned media. The endothelial cells express many of the transporters displayed in vivo but not all. Although cell culture models vary, none express the tight barrier observed in vivo. Because microvessels are isolated directly from the brain, they express all of the transporters displayed in vivo. Their disadvantage is that the preparation is laborious, requires animals, and has a shorter lifespan in vitro. We present an approach in which transport is first verified in isolated microvessels, and then the mechanism is studied in cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin, L. L. & Staddon, J. M. (1999). The cell biology of the blood-brain barrier. Annu Rev Neurosci 22, 11–28.

    Article  PubMed  CAS  Google Scholar 

  2. Zeller, K., Rahner-Welsch, S. & Kuschinsky, W. (1997). Distribution of Glut1 glucose transporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 17, 204–9.

    Article  PubMed  CAS  Google Scholar 

  3. Gordon, G. R., Mulligan, S. J. & MacVicar, B. A. (2007). Astrocyte control of the cerebrovasculature. Glia 55, 1214–21.

    Article  PubMed  Google Scholar 

  4. Begley, D. J. (2004). ABC transporters and the blood-brain barrier. Curr Pharm Des 10, 1295–312.

    Article  PubMed  CAS  Google Scholar 

  5. Kalaria, R. N. & Harik, S. I. (1987). Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. J Neurochem 49, 856–64.

    Article  PubMed  CAS  Google Scholar 

  6. Renkawek, K., Murray, M. R., Spatz, M. & Klatzo, I. (1976). Distinctive histochemical characteristics of brain capillaries in organotypic culture. Exp Neurol 50, 194–206.

    Article  PubMed  CAS  Google Scholar 

  7. Wolff, J. E., Belloni-Olivi, L., Bressler, J. P. & Goldstein, G. W. (1992). Gamma-glutamyl transpeptidase activity in brain microvessels exhibits regional heterogeneity. J Neurochem 58, 909–15.

    Article  PubMed  CAS  Google Scholar 

  8. Nicolazzo, J. A., Charman, S. A. & Charman, W. N. (2006). Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58, 281–93.

    Article  PubMed  CAS  Google Scholar 

  9. Roux, F. & Couraud, P. O. (2005). Rat brain endothelial cell lines for the study of ­blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 25, 41–58.

    Article  PubMed  Google Scholar 

  10. Bobilya, D. J. A model for transport studies of the blood-brain barrier. Methods Mol Biol 637, 149–63.

    Google Scholar 

  11. Gumbleton, M. & Audus, K. L. (2001). Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 90, 1681–98.

    Article  PubMed  CAS  Google Scholar 

  12. Perriere, N., Yousif, S., Cazaubon, S., Chaverot, N., Bourasset, F., Cisternino, S., Decleves, X., Hori, S., Terasaki, T., Deli, M., Scherrmann, J. M., Temsamani, J., Roux, F. & Couraud, P. O. (2007). A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res 1150, 1–13.

    Article  PubMed  CAS  Google Scholar 

  13. Boado, R. J. & Pardridge, W. M. (1994). Measurement of blood-brain barrier GLUT1 glucose transporter and actin mRNA by a quantitative polymerase chain reaction assay. J Neurochem 62, 2085–90.

    Article  PubMed  CAS  Google Scholar 

  14. Kido, Y., Tamai, I., Nakanishi, T., Kagami, T., Hirosawa, I., Sai, Y. & Tsuji, A. (2002). Evaluation of blood-brain barrier transporters by co-culture of brain capillary endothelial cells with astrocytes. Drug Metab Pharmacokinet 17, 34–41.

    Article  PubMed  CAS  Google Scholar 

  15. Dolman, D., Drndarski, S., Abbott, N. J. & Rattray, M. (2005). Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93, 825–33.

    Article  PubMed  CAS  Google Scholar 

  16. Butt, A. M., Jones, H. C. & Abbott, N. J. (1990). Electrical resistance across the ­blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429, 47–62.

    PubMed  CAS  Google Scholar 

  17. Smith, Q. R. & Rapoport, S. I. (1986). Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem 46, 1732–42.

    Article  PubMed  CAS  Google Scholar 

  18. Crone, C. (1984). Lack of selectivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J Physiol 353, 317–37.

    PubMed  CAS  Google Scholar 

  19. Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W. & Aschner, M. (2001). Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Brain Res Mol Brain Res 97, 43–50.

    Article  PubMed  CAS  Google Scholar 

  20. Stewart, P. A. & Wiley, M. J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail – chick transplantation chimeras. Dev Biol 84, 183–92.

    Article  PubMed  CAS  Google Scholar 

  21. Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G. & Breimer, D. D. (2001). Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12, 215–22.

    Article  PubMed  CAS  Google Scholar 

  22. Wolburg, H., Neuhaus, J., Kniesel, U., Krauss, B., Schmid, E. M., Ocalan, M., Farrell, C. & Risau, W. (1994). Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107 ( Pt 5), 1347–57.

    Google Scholar 

  23. Roux, F., Durieu-Trautmann, O., Chaverot, N., Claire, M., Mailly, P., Bourre, J. M., Strosberg, A. D. & Couraud, P. O. (1994). Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol 159, 101–13.

    Article  PubMed  CAS  Google Scholar 

  24. Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J. & et al. (1991). A cell culture model of the blood-brain barrier. J Cell Biol 115, 1725–35.

    Google Scholar 

  25. Torok, M., Huwyler, J., Gutmann, H., Fricker, G. & Drewe, J. (2003). Modulation of transendothelial permeability and expression of ATP-binding cassette transporters in cultured brain capillary endothelial cells by astrocytic factors and cell-culture conditions. Exp Brain Res 153, 356–65.

    Article  PubMed  Google Scholar 

  26. Hoheisel, D., Nitz, T., Franke, H., Wegener, J., Hakvoort, A., Tilling, T. & Galla, H. J. (1998). Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244, 312–6.

    Article  PubMed  CAS  Google Scholar 

  27. Brown, R. C., Morris, A. P. & O’Neil, R. G. (2007). Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130, 17–30.

    Article  PubMed  CAS  Google Scholar 

  28. Goldstein, G. W., Wolinsky, J. S., Csejtey, J. & Diamond, I. (1975). Isolation of meta­bolically active capillaries from rat brain. J Neurochem 25, 715–7.

    Article  PubMed  CAS  Google Scholar 

  29. Dallaire, L., Tremblay, L. & Beliveau, R. (1991). Purification and characterization of metabolically active capillaries of the blood-brain barrier. Biochem J 276 (Pt 3), 745–52.

    PubMed  Google Scholar 

  30. Betz, A. L. & Goldstein, G. W. (1986). Specialized properties and solute transport in brain capillaries. Annu Rev Physiol 48, 241–50.

    Article  PubMed  CAS  Google Scholar 

  31. Miller, D. S., Nobmann, S. N., Gutmann, H., Toeroek, M., Drewe, J. & Fricker, G. (2000). Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol 58, 1357–67.

    PubMed  CAS  Google Scholar 

  32. Li, J. Y., Boado, R. J. & Pardridge, W. M. (2001). Blood-brain barrier genomics. J Cereb Blood Flow Metab 21, 61–8.

    Article  PubMed  CAS  Google Scholar 

  33. Ohtsuki, S., Yamaguchi, H., Katsukura, Y., Asashima, T. & Terasaki, T. (2008). mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 104, 147–54.

    PubMed  CAS  Google Scholar 

  34. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. M. & Decleves, X. (2007). Expression of drug transporters at the ­blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res 1134, 1–11.

    Article  PubMed  CAS  Google Scholar 

  35. Moro, V., Kacem, K., Springhetti, V., Seylaz, J. & Lasbennes, F. (1995). Microvessels isolated from brain: localization of muscarinic sites by radioligand binding and immunofluorescent techniques. J Cereb Blood Flow Metab 15, 1082–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Bressler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vernon, H., Clark, K., Bressler, J.P. (2011). In Vitro Models to Study the Blood Brain Barrier. In: Costa, L., Giordano, G., Guizzetti, M. (eds) In Vitro Neurotoxicology. Methods in Molecular Biology, vol 758. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-170-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-170-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-169-7

  • Online ISBN: 978-1-61779-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics