Advertisement

Laser-Capture Microdissection of Hyperlipidemic/ApoE−/− Mouse Aorta Atherosclerosis

  • Michael Beer
  • Sandra Doepping
  • Markus Hildner
  • Gabriele Weber
  • Rolf Grabner
  • Desheng Hu
  • Sarajo Kumar Mohanta
  • Prasad Srikakulapu
  • Falk Weih
  • Andreas J. R. HabenichtEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 755)

Abstract

Atherosclerosis is a transmural chronic inflammatory condition of small and large arteries that is associated with adaptive immune responses at all disease stages. However, impacts of adaptive immune reactions on clinically apparent atherosclerosis such as intima lesion (plaque) rupture, thrombosis, myocardial infar-ction, and aneurysm largely remain to be identified. It is increasingly recognized that leukocyte infiltrates in plaque, media, and adventitia are distinct but that their specific roles have not been defined. To map these infiltrates, we employed laser-capture microdissection (LCM) to isolate the three arterial wall laminae using apoE−/− mouse aorta as a model. RNA from LCM-separated tissues was extracted and large-scale, whole-genome expression microarrays were prepared. We observed that the quality of the resulting gene expression maps was compromised by tissue RNA carried over from adjacent laminae during LCM. To account for these flaws, we established quality controls and algorithms to improve the predictive power of LCM-derived microarray data. Our approach creates robust transcriptome atlases of normal and atherosclerotic aorta. Assessing LCM transcriptomes for immunity-related mRNAs indicated markedly distinctive gene expression patterns in the three laminae of the atherosclerotic aorta. These mouse mRNA expression data banks can now be mined to address a wide range of questions in cardiovascular biology.

Key words

Atherosclerosis Artery tertiary lymphoid organ (ATLO) Adventitial inflammation Immune response Laser-capture microdissection Microarrays Transcriptome atlas Media Plaque Adventitia 

References

  1. 1.
    Lusis, A.J. (2000) Atherosclerosis. Nature 407, 233–241.CrossRefGoogle Scholar
  2. 2.
    Glass, C.K., and Witztum, J.L. (2001) Atherosclerosis. The road ahead. Cell 104, 503–516.Google Scholar
  3. 3.
    Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868–874.CrossRefGoogle Scholar
  4. 4.
    Witztum, J.L. (2002) Splenic immunity and atherosclerosis: a glimpse into a novel paradigm ? J. Clin. Invest. 109, 721–724.Google Scholar
  5. 5.
    Hansson, G.K. (2005) Inflammation, atherosclerosis, and coronary heart disease. N. Engl. J. Med. 352, 1685–1695.CrossRefGoogle Scholar
  6. 6.
    Zhao, L., Moos, M.P., Grabner, R., Pedrono, F., Fan, J., Kaiser, B., John, N., Schmidt, S., Spanbroek, R., Lotzer, K., Huang, L., Cui, J., Rader, D.J., Evans, J.F., Habenicht. A.J., Funk, C.D. (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat. Med. 9, 966–973.CrossRefGoogle Scholar
  7. 7.
    Moos, M.P.W., John, N., Grabner, R., Nossmann, S., Gunther, B., Vollandt, R., Funk, C.D., Kaiser, B., Habenicht, A.J.R. (2005) The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2386–2391.CrossRefGoogle Scholar
  8. 8.
    Galkina, E., Kadl, A., Sanders, J., Varughese, D., Sarembock, I.J., and Ley, K. (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin-dependent. J. Exp. Med. 203, 1273–1282.CrossRefGoogle Scholar
  9. 9.
    Grabner, R., Lotzer, K., Dopping, S., Hildner, M., Radke, D., Beer, M., Spanbroek, R., Lippert, B., Reardon, C.A., Getz, G.S., Fu, Y.-X., Hehlgans, T., Mebius, R.E., van der Wall, M., Kruspe, D., Englert, C., Lovas, A., Hu, D., Randolph, G.J., Weih, F., Habenicht, A.J.R. (2009) Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged apoE−/− mice. J. Exp. Med. 206, 233–248.CrossRefGoogle Scholar
  10. 10.
    Lotzer, K., Dopping, S., Connert, S., Grabner, R., Lemser, B., Beer, M., Hildner, M., Hehlgans, T., van der Wall, M., Mebius, R.E., Lovas, A., Randolph, G.J., Weih, F., Habenicht, A.J.R. (2010) Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells upon combined TNFR1/LTβR NF-κB signaling. Arterioscler. Thromb. Vasc. Biol. 30, 395–402.CrossRefGoogle Scholar
  11. 11.
    Espina, V., Wulfkuhle, J.D., Calvert, V.S., VanMeter, A., Zhou, W., Coukos, G., Geho, D.H., Petricoin, E.F., Liotta, L.A. (2006) Laser-capture microdissection. Nature Protocols 1, 586–603.CrossRefGoogle Scholar
  12. 12.
    Fend, F., Emmert-Buck, M.R., Chuaqui, R., Cole, K., Lee, J., Liotta, L.A., and Raffeld, M. (1999) Immuno-LCM: Laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66.CrossRefGoogle Scholar
  13. 13.
    Clément-Ziza, M., Munnich, A., Lyonnet, S., Jaubert, F., Besmond, C. (2008) Stabilization of RNA during laser capture microdissection by performing experiments under argon athmosphere or using ethanol as a solvent in staining solutions. RNA 14, 2698–2704.CrossRefGoogle Scholar
  14. 14.
    Kuhn, D.E., Roy, S., Radtke, J., Gupta, S., and Sen, C.K. (2006) Laser microdissection and pressure-catapulting technique to study gene expression in the reoxygenated myocardium. Am. J. Physiol. Heart Circ. Physiol. 290:H2625–2632.CrossRefGoogle Scholar
  15. 15.
    Uzonyi, B., Lotzer, K., Jahn, S., Kramer, C., Hildner, M., Bretschneider, E., Radke, D., Beer, M., Vollandt, R., Evans, J.F., Funk, C.D., Habenicht, A.J. (2006) Cysteinyl leukotriene 2 receptor and protease-activated receptor 1 activate strongly correlated early genes in human endothelial cells. Proc. Natl. Acad. Sci. USA 103, 6326–6331.CrossRefGoogle Scholar
  16. 16.
    Ingersoll, M.A., Spanbroek, R., Lottaz, C., Gautier, E.L., Frankenberger, M., Hoffmann, R., Lang, R., Haniffa, M., Collin, M., Tacke, F., Habenicht, A.J., Ziegler-Heitbrock, L., Randolph, G.J. (2009) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–9.CrossRefGoogle Scholar
  17. 17.
    R Development Core Team. (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  18. 18.
    Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y., and Zhang, J. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5:R80. URL http://genomebiology.com/2004/5/10/R80. Google Scholar
  19. 19.
    Bolstad, B.M., Irizarry R.A., Astrand M., and Speed T.P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193.CrossRefGoogle Scholar
  20. 20.
    Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael Beer
    • 1
  • Sandra Doepping
    • 1
  • Markus Hildner
    • 1
  • Gabriele Weber
    • 1
  • Rolf Grabner
    • 1
  • Desheng Hu
    • 1
  • Sarajo Kumar Mohanta
    • 1
  • Prasad Srikakulapu
    • 1
  • Falk Weih
    • 1
  • Andreas J. R. Habenicht
    • 1
    Email author
  1. 1.Institute for Vascular MedicineFriedrich Schiller University of JenaJenaGermany

Personalised recommendations