Advertisement

Transcriptome Profiling of Murine Spinal Neurulation Using Laser Capture Microdissection and High-Density Oligonucleotide Microarrays

  • Shoufeng Cao
  • Boon-Huat Bay
  • George W. YipEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 755)

Abstract

Neurulation is a critical process in the formation of the central nervous system during embryonic ­development. Closure of the neural tube is driven by forces that originate from both the neuroepithelium and the surrounding tissues. In this chapter, we describe the use of laser capture microdissection to ­isolate and separately collect cells from the neuroepithelium and the underlying mesenchyme. We provide protocols for processing of samples for downstream comparison of the transcriptomes of two cell populations using high-density oligonucleotide microarrays, with an emphasis on important technical issues that are to be borne in mind when carrying out these experiments.

Key words

Laser capture microdissection Mammalian spinal neurulation Transcriptomic analysis High-density oligonucleotide microarray 

Notes

Acknowledgments

We thank Associate Professors Ming Teh and Wei-Yi Ong for kindly allowing us to use their laser capture microdissection ­systems, and their colleagues for help with operating the ­instruments. We are also grateful to Ms Song-Lin Bay for her excellent assistance in preparing the diagrams for this chapter. The work was supported by Grant R-181-000-095-112 from the Academic Research Fund, Ministry of Education, Singapore (G.W.Y.). S.C. is the recipient of a graduate research scholarship from the National University of Singapore.

References

  1. 1.
    Gilbert, S. F. (2010) Developmental biology, 9th ed. Sinauer Associates, Sunderland.Google Scholar
  2. 2.
    Sadler, T. W. (2010) Langman’s medical embryology, 11th ed. Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  3. 3.
    Greene, N. D., Stanier, P., and Copp, A. J. (2009) Genetics of human neural tube defects. Hum. Mol. Genet. 18, R113-R129.CrossRefGoogle Scholar
  4. 4.
    Copp, A. J. and Greene, N. D. (2010) Genetics and development of neural tube defects. J. Pathol. 220, 217–230.Google Scholar
  5. 5.
    Copp, A. J., Greene, N. D., and Murdoch, J. N. (2003) The genetic basis of mammalian neurulation. Nat. Rev. Genet. 4, 784–793.CrossRefGoogle Scholar
  6. 6.
    Harris, M. J. and Juriloff, D. M. (2007) Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 79, 187–210.CrossRefGoogle Scholar
  7. 7.
    Shum, A. S. W. and Copp, A. J. (1996) Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat. Embryol. (Berl. ) 194, 65–73.CrossRefGoogle Scholar
  8. 8.
    Arcturus (2003) HistoGene LCM Frozen Section Staining Kit. Arcturus, Mountain View.Google Scholar
  9. 9.
    Arcturus (2004) PicoPure RNA Isolation Kit. Arcturus, Mountain View.Google Scholar
  10. 10.
    Affymetrix (2009) GeneChip 3’ IVT Express Kit. Affymetrix, Sant Clara.Google Scholar
  11. 11.
    Affymetrix (2008) GeneChip Hybridization, Wash and Stain Kit. Affymetrix, Santa Clara.Google Scholar
  12. 12.
    Yip, G. W., Ferretti, P., and Copp, A. J. (2002) Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo. Development 129, 2109–2119.Google Scholar
  13. 13.
    Brown, N. A. and Fabro, S. (1981) Quantitation of rat embryonic development in vitro: a morphological scoring system. Teratology 24, 65–78.CrossRefGoogle Scholar
  14. 14.
    Wang, S. S., Sherman, M. E., Rader, J. S., Carreon, J., Schiffman, M., and Baker, C. C. (2006) Cervical tissue collection methods for RNA preservation: comparison of snap-frozen, ethanol-fixed, and RNAlater-fixation. Diagn. Mol. Pathol. 15, 144–148.CrossRefGoogle Scholar
  15. 15.
    Stemmer, K., Ellinger-Ziegelbauer, H., Lotz, K., Ahr, H. J., and Dietrich, D. R. (2006) Establishment of a protocol for the gene expression analysis of laser microdissected rat kidney samples with affymetrix genechips. Toxicol. Appl. Pharmacol. 217, 134–142.CrossRefGoogle Scholar
  16. 16.
    Roos-van Groningen, M. C., Eikmans, M., Baelde, H. J., de, H. E., and Bruijn, J. A. (2004) Improvement of extraction and processing of RNA from renal biopsies. Kidney Int. 65, 97–105.Google Scholar
  17. 17.
    Micke, P., Ohshima, M., Tahmasebpoor, S., Ren, Z. P., Ostman, A., Ponten, F. et al. (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86, 202–211.CrossRefGoogle Scholar
  18. 18.
    Noriega, N. C., Kohama, S. G., and Urbanski, H. F. (2009) Gene expression profiling in the rhesus macaque: methodology, annotation and data interpretation. Methods 49, 42–49.CrossRefGoogle Scholar
  19. 19.
    Nikolova, V., Koo, C. Y., Ibrahim, S. A., Wang, Z., Spillmann, D., Dreier, R. et al. (2009) Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397–407.CrossRefGoogle Scholar
  20. 20.
    Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U. S. A 98, 31–36.CrossRefGoogle Scholar
  21. 21.
    Hahne, F., Huber, W., Gentleman, R., and Falcon, S. (2008) Bioconductor case studies. Springer, New York.Google Scholar
  22. 22.
    Gohlmann, H. and Talloen, W. (2009) Gene expression studies using Affymetrix microarrays. Chapman & Hall, Boca Raton.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations