Advertisement

Region-Specific In Situ Hybridization-Guided Laser-Capture Microdissection on Postmortem Human Brain Tissue Coupled with Gene Expression Quantification

  • René BernardEmail author
  • Sharon Burke
  • Ilan A. Kerman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 755)

Abstract

This chapter describes the procedure of in situ hybridization-guided laser-capture microdissection performed on postmortem human brain tissue. This procedure permits the precise collection of brain tissue within anatomically defined brain nuclei that is enriched with mRNA. The chapter emphasizes the specific handling of postmortem tissue and preservation of RNA integrity to ensure high-quality gene profiling. Downstream procedures including mRNA amplification, gene profiling using high-density microarray chips, and confirmation with quantitative real-time polymerase chain reaction (qPCR) are described. PCR primer design and cDNA quantification required for qPCR are delineated.

Key words

In situ hybridization Postmortem Microdissection Laser capture Gene expression PCR Microarray Brain Nucleus 

References

  1. 1.
    Bernard, R., Kerman IA, Meng F, Evans SJ, Amrein I, Jones EG, Bunney WE, Akil H, Watson SJ, Thompson RC (2009) Gene expression profiling of neurochemically-defined regions of the human brain by in situ hybridization-guided laser capture microdissection. J Neurosci Methods, 178:46–54.CrossRefGoogle Scholar
  2. 2.
    Bernard, R., Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry, 16: in press.Google Scholar
  3. 3.
    Atz, M., Walsh D, Cartagena P, Li J, Evans S, Choudary P, Overman K, Stein R, Tomita H, Potkin S, Myers R, Watson SJ, Jones EG, Akil H, Bunney WE Jr, Vawter MP (2007) Methodological considerations for gene expression profiling of human brain. J Neurosci Methods, 163:295–309.CrossRefGoogle Scholar
  4. 4.
    Li, J.Z., Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, Lopez JF, Avelar A, Shokoohi V, Chung T, Mesarwi O, Jones EG, Watson SJ, Akil H, Bunney WE Jr, Myers RM (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet, 13:609–16.CrossRefGoogle Scholar
  5. 5.
    Tomita, H. Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, Overman KM, Atz ME, Myers RM, Jones EG, Watson SJ, Akil H, Bunney WE (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry, 55:346–52.Google Scholar
  6. 6.
    Rehncrona, S., I. Rosén, B.K. Siesjö. (1981) Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab, 1:297–311.CrossRefGoogle Scholar
  7. 7.
    Yates, C.M. Butterworth J, Tennant MC, Gordon A. (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem, 55:1624–30.Google Scholar
  8. 8.
    Schoor, O. Weinschenk T, Hennenlotter J, Corvin S, Stenzl A, Rammensee HG, Stevanović S. (2003) Moderate degradation does not preclude microarray analysis of small amounts of RNA. Biotechniques, 35:1192–6, 1198–201.Google Scholar
  9. 9.
    Greene, J.G., R. Dingledine, J.T. Greenamyre, (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis, 18:19–31.CrossRefGoogle Scholar
  10. 10.
    Torres-Munoz, J.E. Van Waveren C, Keegan MG, Bookman RJ, Petito CK. (2004) Gene expression profiles in microdissected neurons from human hippocampal subregions. Brain Res Mol Brain Res, 127:105–14.CrossRefGoogle Scholar
  11. 11.
    Neal, C.R., Jr., H. Akil, S.J. Watson, Jr., (2001) Expression of orphanin FQ and the opioid receptor-like (ORL1) receptor in the developing human and rat brain. J Chem Neuroanat, 22:219–49.CrossRefGoogle Scholar
  12. 12.
    Kerman, I.A. Buck BJ, Evans SJ, Akil H, Watson SJ. (2006) Combining laser capture microdissection with quantitative real-time PCR: effects of tissue manipulation on RNA quality and gene expression. J Neurosci Methods, 153:71–85.Google Scholar
  13. 13.
    Rozen, S. Skaletsky H, (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 132:365–86.Google Scholar
  14. 14.
    Zuker, M., (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31:3406–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centrum für Anatomie, Institut für Integrative NeuroanatomieCharité Campus Mitte – Universitätsmedizin BerlinBerlinGermany
  2. 2.Molecular and Behavioral Neuroscience InstituteAnn ArborUSA
  3. 3.Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations