Laser-Capture Microdissection and Transcriptional Profiling in Archival FFPE Tissue in Prostate Cancer

  • Ajay Joseph
  • Vincent J. GnanapragasamEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 755)


Prognostic markers can improve prediction of the behaviour of a cancer at the point of diagnosis. A key value of any prognostic marker is at the point of tumour diagnosis. In the context of prostate cancer, this implies profiling in the diagnostic formalin-fixed, paraffin-embedded (FFPE) transrectal ultrasound-guided (TRUS) needle biopsy. TRUS needle biopsies commonly contain both stromal and epithelial cells, and malignant glands are found as isolated foci within this tissue. Using the entire biopsy for genetic analysis inevitably results in a significant contamination of malignant cells with benign tissue. This combination of minimal tumour yields and tissue heterogeneity have so far prohibited prognostic transcript and microarray molecular studies in needle biopsies. Laser-capture microdissection (LCM) allows enriched cell populations to be accurately isolated from heterogeneous tissue, hence facilitating analysis of different components from a single tissue sample. Here, we describe its use in isolating tumour cells in archival FFPE prostate needle biopsies and subsequent application for RNA extraction and quantitative real-time PCR (QPCR).

Key words

LCM FFPE Prostate cancer Diagnostic needle biopsies QPCR TRUS Prognostic marker Heterogeneous tissue 


  1. 1.
    Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, and Zattoni F. (2008) EAU guidelines on prostate cancer, Eur Urol 53, 68–80.CrossRefGoogle Scholar
  2. 2.
    Verhagen PC, Tilanus MG, de Weger RA, van Moorselaar RJ, van den Tweel JG, and Boon TA. (2002) Prognostic factors in localised prostate cancer with emphasis on the application of molecular techniques, Eur Urol 41, 363–371.CrossRefGoogle Scholar
  3. 3.
    Schlomm T, Erbersdobler A, Mirlacher M, and Sauter G. (2007) Molecular staging of prostate cancer in the year 2007, World J Urol 25, 19–30.CrossRefGoogle Scholar
  4. 4.
    Player A, Barrett JC, and Kawasaki ES. (2004) Laser capture microdissection, microarrays and the precise definition of a cancer cell, Expert Rev Mol Diagn 4, 831–840.CrossRefGoogle Scholar
  5. 5.
    Rogerson L, Darby S, Jabbar T, Mathers ME, Leung HY, Robson CN, Sahadevan K, O’Toole K, and Gnanapragasam VJ. (2008) Application of transcript profiling in formalin-fixed paraffin-embedded diagnostic prostate cancer needle biopsies, BJU Int 102, 364–370.CrossRefGoogle Scholar
  6. 6.
    Rodriguez AS, Espina BH, Espina V, and Liotta LA. (2008) Automated laser capture microdissection for tissue proteomics, Methods Mol Biol 441, 71–90.CrossRefGoogle Scholar
  7. 7.
    Ladanyi A, Sipos F, Szoke D, Galamb O, Molnar B, and Tulassay Z. (2006) Laser microdissection in translational and clinical research, Cytometry A 69, 947–960.Google Scholar
  8. 8.
    Livak KJ, and Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method, Methods 25, 402–408.CrossRefGoogle Scholar
  9. 9.
    Polacek DC, Passerini AG, Shi C, Francesco NM, Manduchi E, Grant GR, Powell S, Bischof H, Winkler H, Stoeckert CJ, Jr., and Davies PF. (2003) Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA, Physiol Genomics 13, 147–156.Google Scholar
  10. 10.
    Vermeulen J, Derveaux S, Lefever S, De Smet E, De Preter K, Yigit N, De Paepe A, Pattyn F, Speleman F, and Vandesompele J. (2009) RNA pre-amplification enables large-scale RT-qPCR gene-expression studies on limiting sample amounts, BMC Res Notes 2, 235.CrossRefGoogle Scholar
  11. 11.
    Seth D, Gorrell MD, McGuinness PH, Leo MA, Lieber CS, McCaughan GW, and Haber PS. (2003) SMART amplification maintains representation of relative gene expression: quantitative validation by real time PCR and application to studies of alcoholic liver disease in primates, J Biochem Biophys Methods 55, 53–66.CrossRefGoogle Scholar
  12. 12.
    Watson JD, Wang S, Von Stetina SE, Spencer WC, Levy S, Dexheimer PJ, Kurn N, Heath JD, and Miller DM, 3rd. (2008) Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system, BMC Genomics 9, 84.Google Scholar
  13. 13.
    Tomlins SA, Mehra R, Rhodes DR, Shah RB, Rubin MA, Bruening E, Makarov V, and Chinnaiyan AM. (2006) Whole transcriptome amplification for gene expression profiling and development of molecular archives, Neoplasia 8, 153–162.CrossRefGoogle Scholar
  14. 14.
    Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S, Lato S, Pillarisetty S, Purohit R, Wang M, Wang S, and Kurn N. (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis, Biotechniques 37, 854–857.Google Scholar
  15. 15.
    Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, and Wang S. (2005) Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications, Clin Chem 51, 1973–1981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Translational Prostate Cancer Group, Hutchison MRC Research CentreUniversity of CambridgeCambridgeUK

Personalised recommendations