Oligonucleotide Microarray Expression Profiling of Contrasting Invasive Phenotypes in Colorectal Cancer

  • Christopher C. ThornEmail author
  • Deborah Williams
  • Thomas C. Freeman
Part of the Methods in Molecular Biology book series (MIMB, volume 755)


This chapter refers to the application of laser-capture microdissection with oligonucleotide microarray analysis. The protocol described has been successfully used to identify differential transcript expression between contrasting colorectal cancer invasive phenotypes. Tissue processing, RNA extraction, quality control, amplification, fluorescent labelling, purification, hybridisation, and elements of data analysis are covered.

Key words

Oligonucleotide microarray Laser-capture microdissection Invasion Colorectal 


  1. 1.
    Wernert N (1997) The multiple roles of tumour stroma. Virchows Arch; 430: 433–43.CrossRefGoogle Scholar
  2. 2.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature; 411: 375–9.CrossRefGoogle Scholar
  3. 3.
    Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev; 15: 97–101.CrossRefGoogle Scholar
  4. 4.
    Le NH, Franken P, Fodde R (2008) Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer; 98: 1886–93.CrossRefGoogle Scholar
  5. 5.
    Nakamura T, Mitomi H, Kanazawa H et al (2008) Tumor budding as an index to identify high-risk patients with stage II colon cancer. Dis Colon Rectum; 51: 568–72.CrossRefGoogle Scholar
  6. 6.
    Nakahara H, Howard L, Thompson EW et al (1997) Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci U S A; 94: 7959–64.CrossRefGoogle Scholar
  7. 7.
    Brabletz T, Jung A, Reu S et al (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A; 98: 10356–61.CrossRefGoogle Scholar
  8. 8.
    Komatsu K, Kobune-Fujiwara Y, Andoh A et al (2000) Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma. Br J Cancer; 83: 769–74.CrossRefGoogle Scholar
  9. 9.
    Nabeshima K, Shimao Y, Inoue T et al (2002) Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett; 176: 101–9.CrossRefGoogle Scholar
  10. 10.
    Harrell JC, Dye WW, Harvell DM et al (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis; 25: 81–8.CrossRefGoogle Scholar
  11. 11.
    Goldsworthy SM, Stockton PS, Trempus CS et al (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinog; 25: 86–91.CrossRefGoogle Scholar
  12. 12.
    Huang J, Qi R, Quackenbush J et al (2001) Effects of ischemia on gene expression. J Surg Res; 99: 222–7.CrossRefGoogle Scholar
  13. 13.
    Nygaard V, Hovig E (2006) Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res; 34: 996–1014.CrossRefGoogle Scholar
  14. 14.
    Ohashi Y, Creek KE, Pirisi L et al (2004) RNA degradation in human breast tissue after surgical removal: a time-course study. Exp Mol Pathol; 77: 98–103.CrossRefGoogle Scholar
  15. 15.
    Schoor O, Weinschenk T, Hennenlotter J et al (2003) Moderate degradation does not preclude microarray analysis of small amounts of RNA. Biotechniques; 35: 1192–6, 8–201.Google Scholar
  16. 16.
    Zhao H, Hastie T, Whitfield ML et al (2002) Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis. BMC Genomics; 3: 31.CrossRefGoogle Scholar
  17. 17.
    Petalidis L, Bhattacharyya S, Morris GA et al (2003) Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. Nucleic Acids Res; 31: e142.CrossRefGoogle Scholar
  18. 18.
    Kitahara O, Furukawa Y, Tanaka T et al (2001) Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res; 61: 3544–9.Google Scholar
  19. 19.
    Alevizos I, Mahadevappa M, Zhang X et al (2001) Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene; 20: 6196–204.CrossRefGoogle Scholar
  20. 20.
    Luo L, Salunga RC, Guo H et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med; 5: 117–22.CrossRefGoogle Scholar
  21. 21.
    Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol; 158: 2005–10.CrossRefGoogle Scholar
  22. 22.
    Miura K, Bowman ED, Simon R et al (2002) Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res; 62: 3244–50.Google Scholar
  23. 23.
    Zhu G, Reynolds L, Crnogorac-Jurcevic T et al (2003) Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer. Oncogene; 22: 3742–8.CrossRefGoogle Scholar
  24. 24.
    Thorn CC, Freeman TC, Scott N et al (2009) Laser microdissection expression profiling of marginal edges of colorectal tumours reveals evidence of increased lactate metabolism in the aggressive phenotype. Gut; 58: 404–12.CrossRefGoogle Scholar
  25. 25.
    Hewitt SM, Lewis FA, Cao Y et al (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Archives of pathology & laboratory medicine; 132: 1929–35.Google Scholar
  26. 26.
    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC molecular biology; 7: 3.CrossRefGoogle Scholar
  27. 27.
    Knapen D, Vergauwen L, Laukens K et al (2009) Best practices for hybridization design in two-colour microarray analysis. Trends in biotechnology; 27: 406–14.CrossRefGoogle Scholar
  28. 28.
    Simone NL, Bonner RF, Gillespie JW et al (1998) Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet; 14: 272–6.CrossRefGoogle Scholar
  29. 29.
    Wang H, Owens JD, Shih JH et al (2006) Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics; 7: 97.CrossRefGoogle Scholar
  30. 30.
    Bahn S, Augood SJ, Ryan M et al (2001) Gene expression profiling in the post-mortem human brain–no cause for dismay. Journal of chemical neuroanatomy; 22: 79–94.CrossRefGoogle Scholar
  31. 31.
    Betsuyaku T, Griffin GL, Watson MA et al (2001) Laser capture microdissection and real-time reverse transcriptase/ polymerase chain reaction of bronchiolar epithelium after bleomycin. Am J Respir Cell Mol Biol; 25: 278–84.Google Scholar
  32. 32.
    Pan J, Kunkel EJ, Gosslar U et al (2000) A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol; 165: 2943–9.Google Scholar
  33. 33.
    Causton HC, Quackenbush J, Brazma A (2003) Microarray Gene Expression Data Analysis: A Beginner’s Guide. Blackwell, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christopher C. Thorn
    • 1
    Email author
  • Deborah Williams
    • 2
  • Thomas C. Freeman
    • 3
  1. 1.Department of Academic SurgerySt. James’s University HospitalLeedsUK
  2. 2.MRC HarwellOxfordUK
  3. 3.Roslin InstituteUniversity of EdinburghEdinburghUK

Personalised recommendations