Detection and Quantification of MicroRNAs in Laser-Microdissected Formalin-Fixed Paraffin-Embedded Breast Cancer Tissues

  • Sarkawt M. KhoshnawEmail author
  • Des G. Powe
  • Ian O. Ellis
  • Andrew R. Green
Part of the Methods in Molecular Biology book series (MIMB, volume 755)


MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression post-transcriptionally through targeting protein-coding mRNAs for cleavage or translational repression, and thus play key roles in cellular fate-determinant pathways. Both profiling and functional studies demonstrated derangement of miRNA repertoire in many human cancers, including breast tumours. Discovery of miRNAs provided new insights into cancer pathogenesis and led the scientific community to approach novel diagnostic and therapeutic strategies in cancer management. Research in this field is increasing, and the potential for miRNAs being used in clinical settings emphasises the need for high-throughput and sensitive detection techniques. In this chapter, techniques for the analysis of miRNA expression in laser-microdissected formalin-fixed paraffin-embedded breast cancer tissues are discussed.

Key words

Breast cancer MicroRNA Laser capture microdissection Formalin-fixed paraffin-embedded FFPE 



We would like to thank the University of Nottingham and Breakthrough Breast Cancer Research Centre for funding this work. The authors express thanks to Dr Z Hodi for reviewing the cases.


  1. 1.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403, 901–906.Google Scholar
  2. 2.
    Houbaviy, H. B., Murray, M. F., and Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs, Dev Cell 5, 351–358.Google Scholar
  3. 3.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II, EMBO J 23, 4051–4060.Google Scholar
  4. 4.
    Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex, Nature 432, 231–235.Google Scholar
  5. 5.
    Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev 17, 3011–3016.Google Scholar
  6. 6.
    Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science 293, 834–838.Google Scholar
  7. 7.
    Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.(see comment), Cell 123, 631–640.Google Scholar
  8. 8.
    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol Cell 15, 185–197.Google Scholar
  9. 9.
    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003) Vertebrate microRNA genes, Science 299, 1540.Google Scholar
  10. 10.
    Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell 120, 15–20.Google Scholar
  11. 11.
    Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells, Science 309, 1573–1576.Google Scholar
  12. 12.
    Yekta, S., Shih, I. H., and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA, Science 304, 594–596.Google Scholar
  13. 13.
    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.Google Scholar
  14. 14.
    Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Research 65, 9628–9632.Google Scholar
  15. 15.
    Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005) Combinatorial microRNA target predictions, Nat Genet 37, 495–500.Google Scholar
  16. 16.
    Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family, Cell 120, 635–647.Google Scholar
  17. 17.
    Zhu, S., Si, M. L., Wu, H., and Mo, Y. Y. (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1), J Biol Chem 282, 14328–14336.Google Scholar
  18. 18.
    Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Menard, S., Palazzo, J. P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G. A., Querzoli, P., Negrini, M., and Croce, C. M. (2005) MicroRNA gene expression deregulation in human breast cancer, Cancer Res 65, 7065–7070.Google Scholar
  19. 19.
    Blenkiron, C., and Miska, E. A. (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy, Hum Mol Genet 16 Spec No 1, R106-113.Google Scholar
  20. 20.
    Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lonning, P. E., Brown, P. O., Borresen-Dale, A. L., and Botstein, D. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc Natl Acad Sci U S A 100, 8418–8423.Google Scholar
  21. 21.
    Srinivasan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids, Am J Pathol 161, 1961–1971.Google Scholar
  22. 22.
    Masuda, N., Ohnishi, T., Kawamoto, S., Monden, M., and Okubo, K. (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples, Nucleic Acids Res 27, 4436–4443.Google Scholar
  23. 23.
    Li, J., Smyth, P., Flavin, R., Cahill, S., Denning, K., Aherne, S., Guenther, S. M., O’Leary, J. J., and Sheils, O. (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells, BMC Biotechnology 7, 36.Google Scholar
  24. 24.
    Fend, F., and Raffeld, M. (2000) Laser capture microdissection in pathology, J Clin Pathol 53, 666–672.Google Scholar
  25. 25.
    Espina, V., Heiby, M., Pierobon, M., and Liotta, L. A. (2007) Laser capture microdissection technology, Expert Rev Mol Diagn 7, 647–657.Google Scholar
  26. 26.
    Wang, H., Ach, R. A., and Curry, B. (2007) Direct and sensitive miRNA profiling from low-input total RNA, RNA 13, 151–159.Google Scholar
  27. 27.
    Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007) miR-21-mediated tumor growth, Oncogene 26, 2799–2803.Google Scholar
  28. 28.
    Yan, L.-X., Huang, X.-F., Shao, Q., Huang, M.-Y., Deng, L., Wu, Q.-L., Zeng, Y.-X., and Shao, J.-Y. (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis, RNA, rna.1034808.Google Scholar
  29. 29.
    Green, A. R., Krivinskas, S., Young, P., Rakha, E. A., Paish, E. C., Powe, D. G., and Ellis, I. O. (2009) Loss of expression of chromosome 16q genes DPEP1 and CTCF in lobular carcinoma in situ of the breast, Breast Cancer Res Treat 113, 59–66.Google Scholar
  30. 30.
    Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., and Guegler, K. J. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res 33, e179.Google Scholar
  31. 31.
    Lao, K., Xu, N. L., Yeung, V., Chen, C., Livak, K. J., and Straus, N. A. (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples, Biochem Biophys Res Commun 343, 85–89.Google Scholar
  32. 32.
    Tang, F., Hajkova, P., Barton, S. C., Lao, K., and Surani, M. A. (2006) MicroRNA expression profiling of single whole embryonic stem cells, Nucleic Acids Research 34, e9.Google Scholar
  33. 33.
    Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., and Vandesompele, J. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA, Nucl. Acids Res., gkn725.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sarkawt M. Khoshnaw
    • 1
    Email author
  • Des G. Powe
    • 1
  • Ian O. Ellis
    • 1
  • Andrew R. Green
    • 1
  1. 1.Department of Histopathology, School of Molecular Medical SciencesUniversity of Nottingham and Nottingham University Hospitals TrustNottinghamUK

Personalised recommendations