Advertisement

Laser Capture Microdissection: Methods and Applications

  • Kristen DeCarlo
  • Andrew Emley
  • Ophelia E. Dadzie
  • Meera MahalingamEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 755)

Abstract

Laser microdissection is a nonmolecular, minimally disruptive method to obtain cytologically and/or phenotypically defined cells or groups of cells from heterogeneous tissues. It is a versatile technology and allows the preparation of homogenous isolates of specific subpopulations of cells from which RNA/DNA or protein can be extracted for RT-polymerase chain reaction (PCR), quantitative PCR, Western blot analyses, and mass spectrophotometry.

Key words

DNA analysis Laser capture microdissection Melanoma PCR Proteomics RNA analysis 

References

  1. 1.
    Fend F, Raffeld M (2000) Laser capture microdissection in pathology. J Clin Pathol 53, 666–672CrossRefGoogle Scholar
  2. 2.
    Espina V, Heiby M, Pierobon M et al (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7, 647–657CrossRefGoogle Scholar
  3. 3.
    Burgemeister R (2005) New aspects of laser capture microdissection in research and routine. J Histochem Cytochem 53, 409–412CrossRefGoogle Scholar
  4. 4.
    Agar NS, Halliday GM, Barnetson RS et al (2003) A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol 30, 265–270CrossRefGoogle Scholar
  5. 5.
    Yazdi AS, Puchta U, Flaig MJ et al (2004) Laser-capture microdissection: Applications in routine molecular dermatopathology. J Cutan Pathol 31, 465–470CrossRefGoogle Scholar
  6. 6.
    Esposito G (2007) Complementary techniques: Laser capture microdissection—increasing specificity of gene expression profiling of cancer specimens. Adv Exp Med Biol 593, 54–65CrossRefGoogle Scholar
  7. 7.
    Eltoum IA, Siegal GP, Frost AR (2002) Microdissection of histologic sections: Past, present, and future. Adv Anat Pathol 9, 316–322CrossRefGoogle Scholar
  8. 8.
    Shibata D (1993) Selective ultraviolet radiation fractionation and polymerase chain reaction analysis of genetic alterations. Am J Pathol 143, 1523–1526Google Scholar
  9. 9.
    Murray GI (2007) An overview of laser capture microdissection technologies. Acta Histochem 109, 171–176CrossRefGoogle Scholar
  10. 10.
    Veritas Microdissection System. MDS Analytical Technologies. http://www.moleculardevices.com/pages/instruments/veritas.html. Accessed 11 July 2008
  11. 11.
    Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1, 586–603CrossRefGoogle Scholar
  12. 12.
    Ahram M, Flaig MJ, Gillespie JW, et al (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413–421CrossRefGoogle Scholar
  13. 13.
    Bostwick DG, al Annouf N, Choi C (1994) Establishment of the formalin-free surgical pathology laboratory. Utility of an alcohol-based fixative. Arch Pathol Lab Med 118, 298–302Google Scholar
  14. 14.
    Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23, 7265–7277CrossRefGoogle Scholar
  15. 15.
    Schutze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16, 737–742CrossRefGoogle Scholar
  16. 16.
    Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: Molecular analysis of tissue. Science 278, 1481–1483CrossRefGoogle Scholar
  17. 17.
    Simone NL, Bonner RF, Gillespie JW et al (1998) Laser-capture microdissection: Opening the microscopic frontier to molecular analysis. Trends Genet 14, 272–276CrossRefGoogle Scholar
  18. 18.
    Brignole E (2000) Laser-capture microdissection: Isolating individual cells for molecular analysis. Mod Drug Discovery 3, 69–70Google Scholar
  19. 19.
    Gruber HE, Mougeot JL, Hoelscher G et al (2007) Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc. Spine 32, 1181–1187CrossRefGoogle Scholar
  20. 20.
    Benayahu D, Socher R, Shur I (2008) Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo. Methods Mol Biol 455, 191–201CrossRefGoogle Scholar
  21. 21.
    Sluka P, O’Donnell L, McLachlan RI et al (2008) Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem 43, 173–201CrossRefGoogle Scholar
  22. 22.
    Shukla CJ, Pennington CJ, Riddick AC et al (2008) Laser-capture microdissection in prostate cancer research: establishment and validation of a powerful tool for the assessment of tumour-stroma interactions. BJU Int 101, 765–774CrossRefGoogle Scholar
  23. 23.
    Harrell JC, Dye WW, Harvell DM et al (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors; a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis 25, 81–88CrossRefGoogle Scholar
  24. 24.
    Domazet B, MacLennan G, Lopez-Beltran A et al (2008) Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 1, 475–488Google Scholar
  25. 25.
    Ladanyi A, Sipos F, Szoke D et al (2006) Laser microdissection in translational and clinical research. Cytometry A 69A, 947-960CrossRefGoogle Scholar
  26. 26.
    Bergman R (2008) Dermatopathology and molecular genetics. J Am Acad Dermatol 58, 452–457CrossRefGoogle Scholar
  27. 27.
    What is a Dermatopathologist? The American Society of Dermatopathology. http://www.asdp.org/about/dermatopathologist.cfm. Accessed 1 March 2009
  28. 28.
    Boni R, Zhuang Z, Albuquerque A et al (1998) Loss of heterozygosity detected on 1p and 9q in microdissected atypical nevi. Arch Dermatol 134, 882–883CrossRefGoogle Scholar
  29. 29.
    Maitra A, Gasdar AF, Moore TO et al (2002) Loss of heterozygosity analysis of cutaneous melanoma and benign melanocytic nevi: laser capture microdissection demonstrates clonal genetic changes in acquired nevocellular nevi. Hum Pathol 33, 191–197CrossRefGoogle Scholar
  30. 30.
    Hussein MR (2004) Genetic pathways to melanoma tumorigenesis. J Clin Pathol 57, 797–801CrossRefGoogle Scholar
  31. 31.
    Dadzie OE, Yang S, Emley A et al (2009) RAS and RAF mutations in banal melanocytic aggregates contiguous with primary Cutaneous melanoma: clues to melanomagenesis. Br J Dermatol 160, 368–375CrossRefGoogle Scholar
  32. 32.
    Woody GS (2001) Analysis of clonality in cutaneous T cell lymphoma and associated diseases. Ann NY Acad Sci 941, 26–30CrossRefGoogle Scholar
  33. 33.
    Gallardo F, Pujol RM, Bellosillo D et al (2006) Primary cutaneous B-cell lymphoma (marginal zone) with prominent T-cell component and aberrant dual (T and B) genotype; diagnostic usefulness of laser-capture microdissection. Br J Dermatol 154, 162–166CrossRefGoogle Scholar
  34. 34.
    Zhu G, Xiao H, Mohan VP et al (2003) Gene expression in the tuberculous granuloma: analysis by laser capture microdissection and real-time PCR. Cell Microbiol 5, 445–453CrossRefGoogle Scholar
  35. 35.
    Curran S, McKay JA, McLeod HL, et al (2000). Laser capture microscopy. Mol Pathol 53, 64  –68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kristen DeCarlo
    • 2
  • Andrew Emley
    • 1
  • Ophelia E. Dadzie
    • 3
  • Meera Mahalingam
    • 1
    Email author
  1. 1.Dermatopathology Section, Department of DermatologyBoston University School of MedicineBostonUSA
  2. 2.Boston University School of MedicineBostonUSA
  3. 3.Dermatopathology Section, St John’s Institute of DermatologySt. Thomas’ HospitalLondonUK

Personalised recommendations