Advertisement

A Case Study on the Comparison of Different Software Tools for Automated Quantification of Peptides

  • Niklaas ColaertEmail author
  • Joël Vandekerckhove
  • Lennart Martens
  • Kris Gevaert
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 753)

Abstract

MS-driven proteomics has evolved over the past two decades to a high tech and high impact research field. Two distinct factors clearly influenced its expansion: the rapid growth of an arsenal of instrument and proteomic techniques that led to an explosion of high quality data and the development of software tools to analyze and interpret these data which boosted the number of scientific discoveries. In analogy with the benchmarking of new instruments and proteomic techniques, such software tools must be thoroughly tested and analyzed. Recently, new tools were developed for automatic peptide quantification in quantitative proteomic experiments. Here we present a case study where the most recent and frequently used tools are analyzed and compared.

Key words

Automated quantification Mascot Distiller MaxQuant Census MsQuant Rover 

Notes

Acknowledgments

The authors acknowledge the support of research grants from the Fund for Scientific Research – Flanders (Belgium) (project number G.0077.06), the Concerted Research Actions (project BOF07/GOA/012) from the Ghent University, and the Inter University Attraction Poles (IUAP06). We further would like to thank Dr. Bart Ghesquière, Francis Impens, and Evy Timmerman for providing the proteomic data.

References

  1. 1.
    Vaudel, M., Sickmann, A., and Martens, L. (2009) Peptide and protein quantification: a map of the minefield, Proteomics 10, 650–670.CrossRefGoogle Scholar
  2. 2.
    Gevaert, K., Impens, F., Ghesquiere, B., Van Damme, P., Lambrechts, A., and Vandekerckhove, J. (2008) Stable isotopic labeling in proteomics, Proteomics 8, 4873–4885.PubMedCrossRefGoogle Scholar
  3. 3.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics 1, 376–386.PubMedCrossRefGoogle Scholar
  4. 4.
    Mann, M. (2006) Functional and quantitative proteomics using SILAC, Nat Rev Mol Cell Biol 7, 952–958.PubMedCrossRefGoogle Scholar
  5. 5.
    Park, S. K., Venable, J. D., Xu, T., and Yates, J. R., 3rd. (2008) A quantitative analysis software tool for mass spectrometry-based proteomics, Nat Methods 5, 319–322.PubMedGoogle Scholar
  6. 6.
    Mortensen, P., Gouw, J. W., Olsen, J. V., Ong, S. E., Rigbolt, K. T., Bunkenborg, J., Cox, J., Foster, L. J., Heck, A. J., Blagoev, B., Andersen, J. S., and Mann, M. (2009) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics, J Proteome Res 9, 393–403.CrossRefGoogle Scholar
  7. 7.
    Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol 26, 1367–1372.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., and Mendell, J. T. (2005) c-Myc-regulated microRNAs modulate E2F1 expression, Nature 435, 839–843.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghesquiere, B., Colaert, N., Helsens, K., Dejager, L., Vanhaute, C., Verleysen, K., Kas, K., Timmerman, E., Goethals, M., Libert, C., Vandekerckhove, J., and Gevaert, K. (2009) In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography, Mol Cell Proteomics 8, 2642–2652.PubMedCrossRefGoogle Scholar
  10. 10.
    Gevaert, K., Van Damme, J., Goethals, M., Thomas, G. R., Hoorelbeke, B., Demol, H., Martens, L., Puype, M., Staes, A., and Vandekerckhove, J. (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins, Mol Cell Proteomics 1, 896–903.PubMedCrossRefGoogle Scholar
  11. 11.
    Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008) The impact of microRNAs on protein output, Nature 455, 64–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature 455, 58–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd. (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics, J Proteome Res 1, 21–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J. V., and Mann, M. (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics, Nat Protoc 4, 698–705.PubMedCrossRefGoogle Scholar
  15. 15.
    McDonald, W. H., Tabb, D. L., Sadygov, R. G., MacCoss, M. J., Venable, J., Graumann, J., Johnson, J. R., Cociorva, D., and Yates, J. R., 3rd. (2004) MS1, MS2, and SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications, Rapid Commun Mass Spectrom 18, 2162–2168.PubMedCrossRefGoogle Scholar
  16. 16.
    Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung, K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E., McComb, M. E., Oliver, S. G., Omenn, G., Paton, N. W., Simpson, R., Smith, R., Taylor, C. F., Zhu, W., and Aebersold, R. (2004) A common open representation of mass spectrometry data and its application to proteomics research, Nat Biotechnol 22, 1459–1466.PubMedCrossRefGoogle Scholar
  17. 17.
    Nesvizhskii, A. I., and Aebersold, R. (2005) Interpretation of shotgun proteomic data: the protein inference problem, Mol Cell Proteomics 4, 1419–1440.PubMedCrossRefGoogle Scholar
  18. 18.
    Colaert, N., Helsens, K., Impens, F., Vandekerckhove, J., and Gevaert, K. (2010) Rover: a tool to visualize and validate quantitative proteomics data from different sources, Proteomics 10, 1226–1229.PubMedCrossRefGoogle Scholar
  19. 19.
    Helsens, K., Timmerman, E., Vandekerckhove, J., Gevaert, K., and Martens, L. (2008) Peptizer, a tool for assessing false positive peptide identifications and manually validating selected results, Mol Cell Proteomics 7, 2364–2372.PubMedCrossRefGoogle Scholar
  20. 20.
    Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap, Mol Cell Proteomics 4, 2010–2021.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Niklaas Colaert
    • 1
    • 2
    Email author
  • Joël Vandekerckhove
    • 3
  • Lennart Martens
    • 1
    • 2
  • Kris Gevaert
    • 3
  1. 1.Department of Medical Protein ResearchVIB, Ghent UniversityGhentBelgium
  2. 2.Department of BiochemistryGhent UniversityGhentBelgium
  3. 3.VIB Department of Medical Protein Research and UGent Department of BiochemistryVIB and Ghent UniversityGhentBelgium

Personalised recommendations