Advertisement

Lectins as Tools to Select for Glycosylated Proteins

  • Els J. M. Van DammeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 753)

Abstract

Glycosylation has been recognized as one of the most important modifications on proteins. The interactions between proteins and glycans are known to play an important role in many biological processes. Lectins are carbohydrate-binding proteins that can specifically interact with and select for carbohydrate structures. The technique of lectin affinity chromatography takes advantage of this specific interaction and enables the selection and purification of glycoproteins with carbohydrate structures complementary to the lectin-binding site. Depending on the carbohydrate specificity of the lectin glycoprotein fractions enriched for example, high mannose or complex N-glycans or O-glycans can be obtained. Afterward both the protein part and the glycan part can be analyzed in more detail allowing the identification of the interacting partners and the type of glycans involved.

Key words

Affinity chromatography carbohydrate specificity glycan glycoprotein lectin 

Notes

Acknowledgments

The financial support of the Research Council of Ghent University and Fund for Scientific Research-Flanders (G.0022.08) is gratefully acknowledged.

References

  1. 1.
    Van Damme, E. J. M., Peumans, W. J., Barre, A., and Rougé, P. (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17, 575–692.Google Scholar
  2. 2.
    Van Damme, E. J. M., Peumans, W. J., Pusztai, A., and Bardocz, S. (1998) Handbook of Plant Lectins: Properties and Biomedical Applications, John Wiley & Sons, Chichester, p. 452.Google Scholar
  3. 3.
    Van Damme, E. J. M., Rougé, P., and Peumans, W. J. (2007) Plant lectins. In: Comprehensive Glycoscience – From Chemistry to Systems Biology, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. J. G. Voragen, eds., Elsevier, New York, volume 3, pp. 563–99.CrossRefGoogle Scholar
  4. 4.
    Van Damme, E. J. M., Lannoo, N., and Peumans, W. J. (2008) Plant lectins. Adv Bot Res 48, 107–209.CrossRefGoogle Scholar
  5. 5.
    Van Damme, E. J. M., Smith, D. F., Cummings, R., and Peumans, W. J. (2011) Glycan arrays to decipher the specificity of plant lectins. In: The Molecular Immunology of Complex Carbohydrates, A. M. Wu, ed., Kluwer Academic/Plenum Publishers, New York, 841–854.Google Scholar
  6. 6.
    Taylor, M. E. and Drickamer, K. (2009) Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology 19, 1155–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Yue, T. and Haab, B. B. (2009) Microarrays in glycoproteomics research. Clin Lab Med 29, 15–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101, 17033–38.PubMedCrossRefGoogle Scholar
  9. 9.
    Paulson, J. C., Blixt, O., and Collins, B. E. (2006) Sweet spots in functional glycomics. Nat Chem Biol 2, 238–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirabayashi, J. (2008) Concept, strategy and realization of lectin-based glycan profiling. J Biochem 144, 139–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Pilobello, K. T., Krishnamoorthy, L., Slawek, D., and Mahal, L. K. (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6, 985–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Damme, E. J. M., Allen, A. K., and Peumans, W. J. (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215, 140–4.CrossRefGoogle Scholar
  13. 13.
    Van Damme, E. J. M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W. J. (1996) The NeuAc (α-2,6)-Gal/GalNAc binding lectin from elderberry (Sambucus nigra) bark, a type 2 ribosome inactivating protein with an unusual specificity and structure. Eur J Biochem 235, 128–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang, W.-C. and Cummings, R. D. (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex type Asn-linked oligosaccharides containing terminal sialic acid-linked α-2,3 to penultimate galactose residues. J Biol Chem 261, 4576–85.Google Scholar
  15. 15.
    Chen, Y., Peumans, W. J., Hause, B., Bras, J., Kumar, M., Proost, P., et al. (2002) Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. FASEB J 16, 905–7.PubMedGoogle Scholar
  16. 16.
    Vranken, A. M., Van Damme, E. J. M., Allen, K., and Peumans, W. J. (1987) Purification and properties of an N-acetyl-galactosamine specific lectin from the plant pathogenic fungus Rhizoctonia solani. FEBS Lett 216, 67–72.CrossRefGoogle Scholar
  17. 17.
    Bador, M., Cabrera, G., Stadlmann, J., Lerouge, P., Cremata, J. A., Gomord, V., et al. (2009) N-glycosylation of plant recombinant pharmaceuticals. In: Recombinant Proteins from Plants, Methods and Protocols, Springer Protocols, L. Faye and V. Gomord, eds., Humana Press, New York, pp. 239–64.Google Scholar
  18. 18.
    Lihme, A., Schafer-Nielsen, C., Larsen, K. P., Müller, K. G., and Bøg-Hansen, T. C. (1986) Divinylsulphone-activated agarose. Formation of stable and non-leaking affinity matrices by immobilization of immunoglobulins and other proteins. J Chromatogr 376, 299–305.PubMedCrossRefGoogle Scholar
  19. 19.
    Shibuya, N., Goldstein, I. J., Van Damme, E. J. M., and Peumans, W. J. (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263, 728–34.PubMedGoogle Scholar
  20. 20.
    Lannoo, N., Peumans, W. J., Van Pamel, E., Alvarez, R., Xiong, T.-C., Hause, G., et al. (2006) Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans. FEBS Lett 580, 6329–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J. (1987) The elderberry (Sambucus nigra) bark lectin recognizes the Neu5Ac (α2-6)/GalNAc sequence. J Biol Chem 262, 1596–601.PubMedGoogle Scholar
  22. 22.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J. (1987) Fractionation of sialylated oligosaccharides, glycopeptides and glycoproteins on immobilized elderberry (Sambucus nigra) bark lectin. Arch Biochem Biophys 254, 1–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular BiotechnologyGhent UniversityGhentBelgium

Personalised recommendations