Advertisement

Positional Proteomics at the N-Terminus as a Means of Proteome Simplification

  • Gemma R. Davidson
  • Stuart D. Armstrong
  • Robert J. BeynonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 753)

Abstract

One strategy to reduce complexity in proteome analysis is through rational reduction of the proteolytic peptides that constitute the analyte for mass spectrometric analysis. Methods for selective isolation of C- and N-terminal peptides have been developed. In this chapter, we outline the context and variety of methods for selective isolation of N-terminal peptides and detail one method based on negative selection through differential removal of internal peptides.

Key words

Proteomics proteome simplification N-terminal peptide isolation biotinylation positional proteomics mass spectrometry 

References

  1. 1.
    Gevaert, K., Ghesquiere, B., Staes, A., Martens, L., Van Damme, J., Thomas, G. R., and Vandekerckhove, J. (2004) Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies, Proteomics 4, 897–908.PubMedCrossRefGoogle Scholar
  2. 2.
    Veenstra, T. D., Conrads, T. P., and Issaq, H. J. (2004) Commentary: What to do with “one-hit wonders”? Electrophoresis 25, 1278–1279.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilkins, M. R., Gasteiger, E., Tonella, L., Ou, K., Tyler, M., Sanchez, J. C., Gooley, A. A., Walsh, B. J., Bairoch, A., Appel, R. D., Williams, K. L., and Hochstrasser, D. F. (1998) Protein identification with N and C-terminal sequence tags in proteome projects, Journal of Molecular Biology 278, 599–608.PubMedCrossRefGoogle Scholar
  4. 4.
    Meinnel, T., and Giglione, C. (2008) Tools for analyzing and predicting N-terminal protein modifications, Proteomics 8, 626–649.PubMedCrossRefGoogle Scholar
  5. 5.
    Agard, N. J., and Wells, J. A. (2009) Methods for the proteomic identification of protease substrates, Current Opinion in Chemical Biology 13, 503–509.PubMedCrossRefGoogle Scholar
  6. 6.
    Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A., and Overall, C. M. (2008) Metadegradomics: Toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome, Molecular & Cellular Proteomics 7, 1925–1951.CrossRefGoogle Scholar
  7. 7.
    Van Damme, P., Van Damme, J., Demol, H., Staes, A., Vandekerckhove, J., and Gevaert, K. (2009) A review of COFRADIC techniques targeting protein N-terminal acetylation, BMC Proceedings 3(Suppl 6), S6.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, J. L., and Roberts, W. K. (1976) Evidence that approximately 80 per cent of soluble-proteins from Ehrlich ascites-cells are N-alpha-acetylated, Journal of Biological Chemistry 251, 1009–1014.PubMedGoogle Scholar
  9. 9.
    Polevoda, B., and Sherman, F. (2000) N-α-terminal acetylation of eukaryotic proteins, Journal of Biological Chemistry 275, 36479–36482.PubMedCrossRefGoogle Scholar
  10. 10.
    Hwang, C. S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals, Science 327, 973–977.PubMedCrossRefGoogle Scholar
  11. 11.
    Kawasaki, H., Imajoh, S., and Suzuki, K. (1987) Separation of peptides on the basis of the difference in positive charge – simultaneous isolation of C-terminal and blocked N-terminal peptides from tryptic digests, Journal of Biochemistry 102, 393–400.PubMedGoogle Scholar
  12. 12.
    Titani, K., Okunuki, K., and Narita, K. (1962) N-Terminal sequence in beef- and horse-heart cytochrome C, Journal of Biochemistry 51, 350–358.PubMedGoogle Scholar
  13. 13.
    Betancourt, L., Besada, V., Gonzalez, L. J., Morera, V., Padron, G., Takao, T., and Shimonishi, Y. (2001) Selective isolation and identification of N-terminal blocked peptides from tryptic protein digests, Journal of Peptide Research 57, 345–353.PubMedCrossRefGoogle Scholar
  14. 14.
    Gorman, J. J., and Shiell, B. J. (1993) Isolation of carboxyl-termini and blocked amino-termini of viral-proteins by high-performance cation-exchange chromatography, Journal of Chromatography 646, 193–205.PubMedCrossRefGoogle Scholar
  15. 15.
    Dormeyer, W., Mohammed, S., van Breukelen, B., Krijgsveld, J., and Heck, A. J. R. (2007) Targeted analysis of protein termini, Journal of Proteome Research 6, 4634–4645.PubMedCrossRefGoogle Scholar
  16. 16.
    McDonald, L., and Beynon, R. J. (2006) Positional proteomics: Preparation of amino-terminal peptides as a strategy for proteome simplification and characterization, Nature Protocols 1, 1790–1798.PubMedCrossRefGoogle Scholar
  17. 17.
    Akiyama, T. H., Sasagawa, T., Suzuki, M., and Titani, K. (1994) A method for selective isolation of the amino-terminal peptide from [alpha]-amino-blocked proteins, Analytical Biochemistry 222, 210–216.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, X., Ye, J., and Højrup, P. (2009) A proteomics approach to study in vivo protein N-α-modifications, Journal of Proteomics 73, 240–251.PubMedCrossRefGoogle Scholar
  19. 19.
    Mikami, T., and Takao, T. (2007) Selective isolation of N-blocked peptides by isocyanate-coupled resin, Analytical Chemistry 79, 7910–7915.PubMedCrossRefGoogle Scholar
  20. 20.
    Miller, B. T., Collins, T. J., Rogers, M. E., and Kurosky, A. (1997) Peptide biotinylation with amine-reactive esters: Differential side chain reactivity, Peptides 18, 1585–1595.PubMedCrossRefGoogle Scholar
  21. 21.
    McDonald, L., Robertson, D. H., Hurst, J. L., and Beynon, R. J. (2005) Positional proteomics: Selective recovery and analysis of N-terminal proteolytic peptides, Nature Methods 2, 955–957.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamaguchi, M., Nakazawa, T., Kuyama, H., Obama, T., Ando, E., Okamura, T., Ueyama, N., and Norioka, S. (2005) High-throughput method for N-terminal sequencing of proteins by MALDI mass spectrometry, Analytical Chemistry 77, 645–651.PubMedCrossRefGoogle Scholar
  23. 23.
    Gevaert, K., and Vandekerckhove, J. (2004) COFRADIC(TM): The Hubble telescope of proteomics, Drug Discovery Today: TARGETS 3, 16–22.CrossRefGoogle Scholar
  24. 24.
    Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G. R., and Vandekerckhove, J. (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides, Nature Biotechnology 21, 566–569.PubMedCrossRefGoogle Scholar
  25. 25.
    Staes, A., Van Damme, P., Helsens, K., Demol, H., Vandekerckhove, J., and Gevaert, K. (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC), Proteomics 8, 1362–1370.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gemma R. Davidson
    • 1
  • Stuart D. Armstrong
    • 1
  • Robert J. Beynon
    • 1
    Email author
  1. 1.Protein Function Group, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations