DNA Nanotechnology pp 115-140

Part of the Methods in Molecular Biology book series (MIMB, volume 749)

Synthesis of Long DNA-Based Nanowires

Protocol

Abstract

Here we describe novel procedures for production of DNA-based nanowires. This include synthesis and characterization of the one-to-one double-helical complex of poly(dG)–poly(dC), triple-helical poly(dG)–poly(dG)–poly(dC) and G4-DNA, which is a quadruple-helical form of DNA. All these types of DNA-based molecules were synthesized enzymatically using Klenow exo fragment of DNA Polymerase I. All the above types of nanowires are characterized by a narrow-size distribution of molecules. The contour length of the molecules can be varied from tens to hundreds of nanometers. These structures possess improved conductive and mechanical properties with respect to a canonical random-sequenced DNA and can possibly be used as wire-like conducting or semiconducting nanostructures in the field of nanoelectronics.

Key words

DNA nanowires Enzymatic synthesis Klenow exo Poly(dG)–poly(dC) G4-DNA Triplex DNA 

References

  1. 1.
    Porath, D., Bezryadin, A., de Vries, S. and Dekker, C. (2000) Direct measurement of electrical transport through DNA molecules. Nature, 403, 635–638.CrossRefGoogle Scholar
  2. 2.
    Hwang, J. S. K., Kong, J., Ahn, D. G., Lee, S., Ahn, D. J. S. and Hwang, W. (2002) Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules. Appl. Phys. Lett., 81, 1134–1136.CrossRefGoogle Scholar
  3. 3.
    Hennig, D., Starikov,E. B., Archilla, J. F. R. and Palmero, F. (2004) Charge transport in poly(dG)-poly(dC) and poly(dA) poly(dT) DNA polymers. J. Biol. Phys., 30, 227–238.CrossRefGoogle Scholar
  4. 4.
    Yi, J. (2003) Conduction of DNA molecules: A charge-ladder model. Physic. Rev. B. 68, 193103.CrossRefGoogle Scholar
  5. 5.
    Lee, H.-Y., Tanaka, H., Otsuka, Y., Yoo, K.-H., Lee, J.-O. and Kawai,T. (2002) Control of electrical conduction in DNA using oxygen hole doping. App. Phys. Lett., 80, 1670–1672.CrossRefGoogle Scholar
  6. 6.
    Yoo, K.-H., Ha, D.H., Lee, J.-O., Park, J.W., Kim, J., Kim, J.J., Lee, H.-Y., Kawai, T. and Choi, H.-Y. (2001) Electrical conduction through Poly(dA)–Poly(dT) and Poly(dG)–Poly(dC)DNAmolecules. Phys. Rev. Lett., 87, 198102.CrossRefGoogle Scholar
  7. 7.
    Kotlyar, A. B., Borovok, N., Molotsky T., Fadeev L., and Gozin M. (2005) In Vitro synthesis of uniform Poly(dG)-Poly(dC) by Klenow exo– fragment of Polymerase I. Nucl. Acid Res. 33, 525–535.Google Scholar
  8. 8.
    Nuzzo, R. G. and Allara, D. L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 105, 4481–4483.CrossRefGoogle Scholar
  9. 9.
    Sellers, H., Ulman, A., Shnidman, Y. and Eilerss, J.E. (1993) Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc., 115, 9389–9401.CrossRefGoogle Scholar
  10. 10.
    Hegner, M., Wagner, P. and Semenza, G. (1993) Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett., 336, 452–456.CrossRefGoogle Scholar
  11. 11.
    Frank-Kamenetskii, M. D. and Mirkin, S. M. (1995) Triplex DNA structures. Annu. Rev. Biochem., 64, 65–95.CrossRefGoogle Scholar
  12. 12.
    Sun, J. S., Garestier, T. and Helene, C. (1996) Oligonucleotide directed triple helix formation. Curr. Opin. Struct. Biol., 6, 327333.Google Scholar
  13. 13.
    Radhakrishnan, I. and Patel, D. J. (1994) DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry, 33, 11405–11416.CrossRefGoogle Scholar
  14. 14.
    Kotlyar, A. B., Borovok, N., Molotsky, T, Klinov, D., Dwir, B. and Kapon E. Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow exo- fragment of DNA polymerase I. 2005 Nucl. Acid Res. 33, 6515–6521.Google Scholar
  15. 15.
    Kerwin, S. M. (2000) G-Quadruplex DNA as a target for drug design. Curr. Pharmaceutic. Design, 6, 441–478.CrossRefGoogle Scholar
  16. 16.
    Davis, J. T. (2004) G-quartets 40 years later: From 50-GMP to molecular biology and supramolecular chemistry, Angew. Chem. Intl. Ed. 43, 668–698.CrossRefGoogle Scholar
  17. 17.
    Keniry M. A. (2001) Quadruplex Structures in Nucleic Acids. Biopolymers, 56, 123–146.CrossRefGoogle Scholar
  18. 18.
    Parkinson, G. N., Lee, M. P. and Neidle, S. (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417, 876–880.CrossRefGoogle Scholar
  19. 19.
    Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. and Neidle, S. (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res., 34, 5402–5415.CrossRefGoogle Scholar
  20. 20.
    Sen, D. and Gilbert, W. (1992) Novel DNA superstructures formed by telomere-like oligomers. Biochemistry, 31, 65–70.CrossRefGoogle Scholar
  21. 21.
    Marsh, T. C., Vesenka, J. and Henderson, E. (1995) A new DNA nanostructure the G-wire imaged by scanning probe microscopy. Nucleic Acids Res., 23, 696–700.CrossRefGoogle Scholar
  22. 22.
    Kotlyar, A. B., Borovok, N., Molotsky, T., Cohen, H., Shapir, E. and Porath, D. (2005) Long monomolecular guanine-based nanowires, Adv. Mater. 17, 1901–1905.CrossRefGoogle Scholar
  23. 23.
    Borovok, N, Molotsky, T, Ghabboun, J, Porath, D. and Kotlyar, A. (2008) Efficient procedure of preparation and properties of long uniform G4-DNA nanowires. Anal. Biochem. 374, 71–78.Google Scholar
  24. 24.
    Cohen, H., Sapir, T., Borovok, N., Molotsky, T., Di Felice, R., Kotlyar, A. B. and Porath, D. (2007) Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Letters, 7, 981–986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry, The George S. Wise Faculty of Life SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations