Self-Assembly of Metal-DNA Triangles and DNA Nanotubes with Synthetic Junctions

  • Hua Yang
  • Pik Kwan Lo
  • Christopher K. McLaughlin
  • Graham D. Hamblin
  • Faisal A. Aldaye
  • Hanadi F. Sleiman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 749)

Abstract

The site-specific insertion of organic and inorganic molecules into DNA nanostructures can provide unique structural and functional capabilities. We have demonstrated the inclusion of two types of molecules. The first is a diphenylphenanthroline (dpp, 1) molecule that is site specifically inserted into DNA strands and which can be used as a template to create metal-coordinating pockets. These building blocks can then be used to assemble metal-DNA 2D and 3D structures, including metal-DNA triangles, described here. The second insertion is a triaryl molecule that provides geometric control in the preparation of 2D single-stranded DNA templates. These can be designed to further assemble into geometrically well-defined nanotubes. Here, we detail the steps involved in the construction of metal-DNA triangles and DNA nanotubes using these methods.

Key words

DNA Self-assembly Nanostructure Transition metal Nanotube 

References

  1. 1.
    Seeman, N. C. (2007) An overview of structural DNA nanotechnology, Mol. Biotech. 37, 246–257.CrossRefGoogle Scholar
  2. 2.
    Aldaye, F. A., Palmer, A. L., and Sleiman, H. F. (2008) Assembling materials with DNA as the guide. Science, 321, 1795–1799.CrossRefGoogle Scholar
  3. 3.
    Lin, C., Liu, Y., and Yan, H. (2009) Designer DNA nanoarchitectures. Biochemistry 48, 1663–1674.CrossRefGoogle Scholar
  4. 4.
    Yang, H. and Sleiman, H. F. (2008) Templated synthesis of highly stable, electroactive and dynamic metal-DNA branched junctions, Angew. Chem. Int. Ed. 47, 2443–2446.CrossRefGoogle Scholar
  5. 5.
    Aldaye, F. A., Lo, P. K., Karam, P. McLaughlin, C. K., Cosa, G. and Sleiman, H. F. (2009) Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character, Nat. Nanotech. 4, 349–352.CrossRefGoogle Scholar
  6. 6.
    Aldaye, F. A. and Sleiman, H. F. (2007) Dynamic DNA Templates for gold nanoparticle discrete structures: control of geometry, particle identity, write /erase and structural switching, J. Am. Chem. Soc. 129, 4130–4131.CrossRefGoogle Scholar
  7. 7.
    Distler, A. M. and Allison, J. (2001) Improved MALDI-MS analysis of oligonucleotides through the use of fucose as a matrix additive, Anal. Chem. 73, 5000–5003.CrossRefGoogle Scholar
  8. 8.
    Carriero, S. and Damha, M. J. (2003) Template-mediated synthesis of lariat RNA and DNA. J. Org. Chem. 68, 8328–8338.CrossRefGoogle Scholar
  9. 9.
    Williams, S., Lund, K., Lin, C., Wonda, P., Lindsay, S., and Yan, H. (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. Lecture Notes in Computer Science, 5347, 90–101.CrossRefGoogle Scholar
  10. 10.
    Zhu, J., Wei, B. Yuan, Y., and Mi, Y. (2009) UNIQUIMER 3D, a software system for structural DNA nanotechnology design, ­analysis and evaluation. Nuc. Acid. Res. 37, 2164–2175.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Albright, L.M. and Slatko, B.E. (2003) Appendix 3B, denaturing polyacrylamide gel electrophoresis. Current Protocols in Nucleic Acid Chemistry. A.3B.1-A.3B.5. John Wiley and Sons, IncGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hua Yang
  • Pik Kwan Lo
  • Christopher K. McLaughlin
  • Graham D. Hamblin
  • Faisal A. Aldaye
  • Hanadi F. Sleiman
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations