Modeling Nanopores for Sequencing DNA

  • Jeffrey R. Comer
  • David B. Wells
  • Aleksei AksimentievEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 749)


Using nanopores to sequence DNA rapidly and at a low cost has the potential to radically transform the field of genomic research. However, despite all the exciting developments in the field, sequencing DNA using a nanopore has yet to be demonstrated. Among the many problems that hinder development of the nanopore sequencing methods is the inability of current experimental techniques to visualize DNA conformations in a nanopore and directly relate the microscopic state of the system to the measured signal. We have recently shown that such tasks could be accomplished through computation. This chapter provides step-by-step instructions of how to build atomic scale models of biological and solid-state nanopore systems, use the molecular dynamics method to simulate the electric field-driven transport of ions and DNA through the nanopores, and analyze the results of such computational experiments.

Key words

Molecular dynamics Transmembrane transport Nucleic acids Membrane proteins Bionanotechnology Computer simulations 


  1. 1.
    Branton, D., Deamer, D., Marziali, A., Bayley, H., Benner, S., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., et al. (2008) The potential and challenges of nanopore sequencing Nature Biotech 26, 1146–1153.CrossRefGoogle Scholar
  2. 2.
    Lagerqvist, J., Zwolak, M., and Ventra, M.  D. (2006) Fast DNA Sequencing via Transverse Electronic Transport Nano Lett 6, 779–782.CrossRefGoogle Scholar
  3. 3.
    Sigalov, G., Comer, J., Timp, G., and Aksimentiev, A. (2008) Detection of DNA sequence using an alternating electric field in a nanopore capacitor Nano Lett 8, 56–63.CrossRefGoogle Scholar
  4. 4.
    Soni, G.  V. and Meller, A. (2007) Progress toward ultrafast DNA sequencing using solid-state nanopores Clinical Chemistry 53, 1996–2001.CrossRefGoogle Scholar
  5. 5.
    Bransburg-Zabary, S., Nachliel, E., and Gutman, M. (2002) A Fast in Silico Simulation of Ion Flux through the Large-Pore Channel Proteins Biophys J 83, 3001–3011.CrossRefGoogle Scholar
  6. 6.
    Aksimentiev, A., Heng, J.  B., Timp, G., and Schulten, K. (2004) Microscopic kinetics of DNA translocation through synthetic nanopores Biophys J 87, 2086–2097.CrossRefGoogle Scholar
  7. 7.
    Aksimentiev, A. and Schulten, K. (2005) Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map Biophys J 88, 3745–3761.CrossRefGoogle Scholar
  8. 8.
    Luan, B. and Aksimentiev, A. (2008) Electro-osmotic screening of the dna charge in a nanopore Phys Rev E 78, 021912.CrossRefGoogle Scholar
  9. 9.
    Dorvel, B., Sigalov, G., Zhao, Q., Comer, J., Dimitrov, V., Mirsaidov, U., Aksimentiev, A., and Timp, G. (2009) Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore Nucl Acids Res 37, 4170–4179.CrossRefGoogle Scholar
  10. 10.
    Wells, D.  B., Abramkina, V., and Aksimentiev, A. (2007) Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics J Chem Phys 127, 125101.CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Phillips, J.  C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.  D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD J Comp Chem 26, 1781–1802.CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    van Dijk, M. and Bonvin, A. M. J.  J. (2009) 3D-DART: a DNA structure modelling server Nucl Acids Res 37, W235–W239.Google Scholar
  18. 18.
    Comer, J., Dimitrov, V., Zhao, Q., Timp, G., and Aksimentiev, A. (2009) Microscopic mechanics of hairpin DNA translocation through synthetic nanopores Biophys J 96, 593–608.CrossRefGoogle Scholar
  19. 19.
    Heng, J.  B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.  V., Sligar, S., Schulten, K., and Timp, G. (2006) The electromechanics of DNA in a synthetic nanopore Biophys J 90, 1098–1106.Google Scholar
  20. 20.
    Wendel, J.  A. and Goddard, III, W.  A. (1992) The Hessian biased force-field for silicon nitride ceramics: Predictions of the thermodynamic and mechanical properties for α- and β-Si3N4 J Chem Phys 97, 5048–5062.CrossRefGoogle Scholar
  21. 21.
    Cruz-Chu, E.  R., Aksimentiev, A., and Schulten, K. (2006) Water-silica force field for simulating nanodevices J Phys Chem B 110, 21497–21508.CrossRefGoogle Scholar
  22. 22.
    Aksimentiev, A., Brunner, R., Cruz-Chu, E.  R., Comer, J., and Schulten, K. (2009) Modeling transport through synthetic nanopores IEEE Nanotechnology Magazine 3, 20–28.CrossRefGoogle Scholar
  23. 23.
    van Beest, B. W.  H., Kramer, G.  J., and van Santen, R.  A. (1990) Force fields for silicas and aluminophosphates based on ab initio calculations Phys Rev Lett 64, 1955–1958.CrossRefGoogle Scholar
  24. 24.
    Vollmayr, K., Kob, W., and Binder, K. (1996) Cooling-rate effects in amorphous silica: A computer-simulation study Phys Rev B 54, 15808–15827.CrossRefGoogle Scholar
  25. 25.
    Cruz-Chu, E.  R., Aksimentiev, A., and Schulten, K. (2009) Ionic current rectification through silica nanopores J Phys Chem C 113, 1850–1862.CrossRefGoogle Scholar
  26. 26.
    Grubmüller, H., Heymann, B., and Tavan, P. (1996) Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force Science 271, 997–999.CrossRefGoogle Scholar
  27. 27.
    Aksimentiev, A., Balabin, I.  A., Fillingame, R.  H., and Schulten, K. (2004) Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase Biophys J 86, 1332–1344.CrossRefGoogle Scholar
  28. 28.
    Ho, C., Qiao, R., Chatterjee, A., Timp, R.  J., Aluru, N.  R., and Timp, G. (2005) Electrolytic transport through a synthetic nanometer-diameter pore Proc Natl Acad Sci USA 102, 10445–14450.CrossRefGoogle Scholar
  29. 29.
    Kim, M., McNally, B., Murata, K., and Meller, A. (2007) Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope Nanotechnology 18, 205302.CrossRefGoogle Scholar
  30. 30.
    Akeson, M., Branton, D., Kasianowicz, J.  J., Brandin, E., and Deamer, D.  W. (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within singe RNA molecules Biophys J 77, 3227–3233.CrossRefGoogle Scholar
  31. 31.
    Meller, A., Nivon, L., Brandin, E., Golovchenko, J., and Branton, D. (2000) Rapid nanopore discrimination between single polynucleotide molecules Proc Natl Acad Sci USA 97, 1079–1084.CrossRefGoogle Scholar
  32. 32.
    Vercoutere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D., and Akeson, M. (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Nature Biotech 19, 248–252.CrossRefGoogle Scholar
  33. 33.
    Vercoutere, W.  A., Winters-Hilt, S., DeGuzman, V.  S., Deamer, D., Ridino, S.  E., Rodgers, J.  T., Olsen, H.  E., Marziali, A., and Akeson, M. (2003) Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules Nucl Acids Res 31, 1311–1318.CrossRefGoogle Scholar
  34. 34.
    Nakane, J., Wiggin, M., and Marziali, A. (2004) A nanosensor for transmembrane capture and identification of single nucleic acid molecules Biophys J 87, 615–621.CrossRefGoogle Scholar
  35. 35.
    Ashkenasy, N., Sánchez-Quesada, J., Bayley, H., and Ghadiri, M.  R. (2005) Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores Angew Chem Int Ed Engl 44, 1401–1404.CrossRefGoogle Scholar
  36. 36.
    Gracheva, M.  E., Xiong, A., Leburton, J.-P., Aksimentiev, A., Schulten, K., and Timp, G. (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor Nanotechnology 17, 622–633.CrossRefGoogle Scholar
  37. 37.
    Gracheva, M.  E., Aksimentiev, A., and Leburton, J.-P. (2006) Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor Nanotechnology 17, 3160–3165.CrossRefGoogle Scholar
  38. 38.
    Cockroft, S., Chu, J., Amorin, M., and Ghadiri, M. (2008) A Single-Molecule Nanopore Device Detects DNA Polymerase Activity with Single-Nucleotide Resolution J Am Chem Soc 130, 818–820.CrossRefGoogle Scholar
  39. 39.
    Kasianowicz, J.  J., Brandin, E., Branton, D., and Deamer, D.  W. (1996) Characterization of individual polynucleotide molecules using a membrane channel Proc Natl Acad Sci USA 93, 13770–13773.Google Scholar
  40. 40.
    Grün, R. (1979) The crystal structure of β-Si3N4; structural and stability considerations between α- and β-Si3N4 Acta Cryst B35, 800–804.Google Scholar
  41. 41.
    Mathé, J., Aksimentiev, A., Nelson, D.  R., Schulten, K., and Meller, A. (2005) Orientation discrimination of single stranded DNA inside the α-hemolysin membrane channel Proc Natl Acad Sci USA 102, 12377–12382.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jeffrey R. Comer
  • David B. Wells
  • Aleksei Aksimentiev
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations