Engineering Mononucleosomes for Single-Pair FRET Experiments

  • Wiepke J. A. Koopmans
  • Ruth Buning
  • John van NoortEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 749)


In DNA nanotechnology, DNA is used as a structural material, rather than as an information carrier. The structural organization of the DNA itself determines accessibility to its underlying information content in vivo. Nucleosomes form the basic level of DNA compaction in eukaryotic nuclei. Nucleosomes sterically hinder enzymes that must bind the nucleosomal DNA, and hence play an important role in gene regulation. In order to understand how accessibility to nucleosomal DNA is regulated, it is necessary to resolve the molecular mechanisms underlying conformational changes in the nucleosome. Exploiting bottom-up control, we designed and constructed nucleosomes with fluorescent labels at strategically chosen locations to study nucleosome structure and dynamics in molecular detail with single-pair Fluorescence Resonance Energy Transfer (spFRET) microscopy. Using widefield total internal reflection fluorescence (TIRF) microscopy on immobilized molecules, we observed and quantified DNA breathing dynamics on individual nucleosomes. Alternatively, fluorescence microscopy on freely diffusing molecules in a confocal detection volume allows a fast characterization of nucleosome conformational distributions.

Key words

Single-molecule fluorescence Nucleosome Reconstitution Fluorescence resonance energy transfer 



We thank Andrew Routh (MRC Cambridge) for samples of micrococcal nuclease-digested nucleosome core particles and useful discussion, Alexander Brehm (University of Marburg) for histone octamer preparations, and Jürgen Groll (RWTH Aachen) for providing samples of the NCO-star PEG material and support with the coating procedure.

This work is part of the research programme of the “Stichting voor Fundamenteel Onderzoek der materie (FOM),” which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).”


  1. 1.
    Seeman, N. and Lukeman, P. (2005) Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports On Progress In Physics 68, 237–270.CrossRefGoogle Scholar
  2. 2.
    Seeman, N. (1998) DNA nanotechnology: Novel DNA constructions. Annual Review of Biophysics and Biomolecular Structure 27, 225–248.CrossRefGoogle Scholar
  3. 3.
    Chen, J. and Seeman, N. (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633.CrossRefGoogle Scholar
  4. 4.
    Goodman, R., Schaap, I., Tardin, C., Erben, C., Berry, R., Schmidt, C., and Turberfield, A. (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665.CrossRefGoogle Scholar
  5. 5.
    Rothemund, P. (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.CrossRefGoogle Scholar
  6. 6.
    Luger, K., Mader, A., Richmond, R., Sargent, D., and Richmond, T. (1997) Crystal structure of the nucleosome core particle at 2.8  Å resolution. Nature 389, 251–260.CrossRefGoogle Scholar
  7. 7.
    Luger, K. (2006) Dynamic nucleosomes. Chromosome Research 14, 5–16.CrossRefGoogle Scholar
  8. 8.
    Koopmans, W. J. A., Brehm, A., Logie, C., Schmidt, T., and van Noort, J. (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J.Fluoresc. 17, 785–795.CrossRefGoogle Scholar
  9. 9.
    Koopmans, W. J. A., Schmidt, T., and van Noort, J. (2008) Nucleosome Immobilization Strategies for Single-Pair FRET Microscopy. ChemPhysChem 9, 2002–2009.CrossRefGoogle Scholar
  10. 10.
    Dyer, P., Edayathumangalam, R., White, C., Bao, Y., Chakravarthy, S., Muthurajan, U., and Luger, K. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Chromatin and Chromatin Remodeling Enzymes, Pt A 375, 23–44.CrossRefGoogle Scholar
  11. 11.
    Lowary, P. and Widom, J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleo­some positioning. J.Mol.Biol. 276, 19–42.CrossRefGoogle Scholar
  12. 12.
    Gansen, A., Hauger, F., Toth, K., and Langowski, J. (2007) Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: Optimizing stability and resolution of subpopulations. Anal.Biochem. 368, 193–204.CrossRefGoogle Scholar
  13. 13.
    Kelbauskas, L., Chan, N., Bash, R., Yodh, J., Woodbury, N., and Lohr, D. (2007) Sequence-dependent nucleosome structure and stability variations detected by Förster resonance energy transfer. Biochemistry 46, 2239–2248.CrossRefGoogle Scholar
  14. 14.
    Davey, C., Sargent, D., Luger, K., Maeder, A., and Richmond, T. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9  Å resolution. J.Mol.Biol. 319, 1097–1113.CrossRefGoogle Scholar
  15. 15.
    Claudet, C., Angelov, D., Bouvet, P., Dimitrov, S., and Bednar, J. (2005) Histone octamer instability under single molecule experiment conditions. J.Biol.Chem. 280, 19958–19965.CrossRefGoogle Scholar
  16. 16.
    Clegg, R. (1992) Fluorescence resonance energy-transfer and nucleic-acids. Methods Enzymol. 211, 353–388.CrossRefGoogle Scholar
  17. 17.
    Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET. Nature Methods 5, 507–516.CrossRefGoogle Scholar
  18. 18.
    Lee, N., Kapanidis, A., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R., and Weiss, S. (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys.J. 88, 2939–2953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wiepke J. A. Koopmans
  • Ruth Buning
  • John van Noort
    • 1
    Email author
  1. 1.Leiden Institute of PhysicsLeiden UniversiteitLeidenThe Netherlands

Personalised recommendations