Trapping and Immobilization of DNA Molecules Between Nanoelectrodes

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 749)

Abstract

DNA is one of the most promising molecules for nanoscale bottom-up fabrication. For both scientific studies and fabrication of devices, it is desirable to be able to manipulate DNA molecules, or self-­assembled DNA constructions, at the single unit level. Efficient methods are needed for precisely attaching the single unit to the external measurement setup or the device structure. So far, this has often been too cumbersome to achieve, and consequently most of the scientific studies are based on a statistical analysis or measurements done for a sample containing numerous molecules in liquid or in a dry state. Here, we explain a method for trapping and attaching nanoscale double-stranded DNA (dsDNA) molecules between nanoelectrodes. The method is based on dielectrophoresis and gives a high yield of trapping only single or a few molecules, which enables, for example, transport measurements at the single ­molecule level. The method has been used to trap different dsDNA fragments, sizes varying from 27 to 8,416 bp, and also DNA origami constructions. We also explain how confocal microscopy can be used to determine and optimize the trapping parameters.

Key words

Dielectrophoresis Trapping Immobilization 

References

  1. 1.
    LaBean, T.H., and Li, H. (2007) Constructing novel materials with DNA. Nano Today 2, 2635.Google Scholar
  2. 2.
    Seeman, N. C. (2003) DNA in a material world. Nature 421, 427–431.Google Scholar
  3. 3.
    Aldaye, F. A., Palmer, A. L., and Sleiman, H. F. (2008) Assembling materials with DNA as the guide. Science 321, 17959.Google Scholar
  4. 4.
    Bidault, S., Garcia de Abajo, F. J., and Polman, A. (2008) Plasmon-based nanolenses sssembled on a well-defined DNA template. J. Am. Chem. Soc. 130, 27501.Google Scholar
  5. 5.
    Keren, K., Berman, R. S., Buchstab, E., Sivan, U., Braun, E. (2003) DNA-templated carbon nanotube field-effect transistor. Science 302, 13802.Google Scholar
  6. 6.
    Pohl, H. (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. (Cambridge University Press., Cambridge.).Google Scholar
  7. 7.
    Burke PJ (2004) Nanodielectrophoresis: Electronic Nanotweezers. Encyclopedia of Nanoscience and Nanotechnology 6, 623–641.Google Scholar
  8. 8.
    Hughes, M. (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11, 124–32.Google Scholar
  9. 9.
    Hölzel, R., Calander, N., Chiragwandi, Z., Willander, M. and Bier, F. F. (2005) Trapping single molecules by dielectrophoresis. Phys. Rev. Lett. 95, 128102.Google Scholar
  10. 10.
    Clarke, R.W., Piper, J.D., Ying, L., and Klenerman, D. (2007) Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys. Rev. Lett. 98, 198102.Google Scholar
  11. 11.
    Tuukkanen, S., Kuzyk, A., Toppari, J. J., Häkkinen, H., Hytönen, V. P., Niskanen, E., Rinkiö, M., and Törmä, P. (2007) Trapping of 27 bp-8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 18, 295204.Google Scholar
  12. 12.
    Tuukkanen, S., Toppari, J. J., Kuzyk, A., Hirviniemi, L., Hytönen, V. P., Ihalainen, T. and Törmä, P. (2006) Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett. 6, 1339–43.Google Scholar
  13. 13.
    Barsotti, R. J, Vahey, M. D., Wartena, R., Chiang, Y. M., Voldman, J., and Stellacci, F. (2007) Assembly of metal nanoparticles into nanogaps. Small 3, 488–99.Google Scholar
  14. 14.
    Hakala, T.K., Linko, V., Eskelinen, A-P., Toppari, J. J., Kuzyk, A., Törmä. P. (2009) Field induced nanolithography for high-throughput pattern transfer. Small 5, 2683.Google Scholar
  15. 15.
    Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–60.Google Scholar
  16. 16.
    Tuukkanen, S., Kuzyk, A., Toppari, J. J., Hytönen, V. P., Ihalainen, T., and Törmä, P. (2005) Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its elec­trical conductivity. Appl. Phys. Lett. 87, 183102.Google Scholar
  17. 17.
    Kuzyk, A., Yurke, B., Toppari, J.J., Linko, V., and Törmä P (2008) Dielectrophoretic trapping of DNA origami. Small 4, 447–50.Google Scholar
  18. 18.
    Linko, V., Paasonen, S. T., Kuzyk, A., Törmä, P., and Toppari, J. J. (2009) Characterisation of the conductance mechanisms of the DNA origami by AC impedance spectroscopy. Small 5, 2382.Google Scholar
  19. 19.
    Castellanos, A., Ramos, A., González, A., Green, N. G., and Morgan, H. (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D: Appl. Phys. 36, 2584–97.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics, Nanoscience CenterUniversity of JyväskyläJyväskyläFinland

Personalised recommendations