Controlled Confinement of DNA at the Nanoscale: Nanofabrication and Surface Bio-Functionalization

  • Matteo PalmaEmail author
  • Justin J. Abramson
  • Alon A. Gorodetsky
  • Colin Nuckolls
  • Michael P. Sheetz
  • Shalom J. Wind
  • James Hone
Part of the Methods in Molecular Biology book series (MIMB, volume 749)


Nanopatterned arrays of biomolecules are a powerful tool to address fundamental issues in many areas of biology. DNA nanoarrays, in particular, are of interest in the study of DNA–protein interactions and for biodiagnostic investigations. In this context, achieving a highly specific nanoscale assembly of oligonucleotides at surfaces is critical. In this chapter, we describe a method to control the immobilization of DNA on nanopatterned surfaces; the nanofabrication and the bio-functionalization involved in the process will be discussed.

Key words

DNA Self-assembly Nanoscale Nanotechnology Fluorescence microscopy 



We gratefully acknowledge support from the office of Naval Research under award number N00014-09-1-1117, National Institutes of Health through award number PN2EY016586 under the NIH Roadmap for Medical Research, and from the National Science Foundation under NSF award number EF-05-07086 and award number CHE-0936923. Additional support from the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number CHE-0641523 and from the New York State Office of Science, Technology, and Academic Research (NYSTAR) is also gratefully acknowledged.


  1. 1.
    Whitesides, G. M. (2003) The ‘right’ size in nanobiotechnology, Nat Biotechnol 21, 1161–1165.CrossRefGoogle Scholar
  2. 2.
    Torres, A. J., Wu, M., Holowka, D., and Baird, B. (2008) Nanobiotechnology and cell biology: Micro- and nanofabricated surfaces to investigate receptor-mediated signaling, Ann Rev Biophys 37, 265–288.CrossRefGoogle Scholar
  3. 3.
    Rosi, N. L., and Mirkin, C. A. (2005) Nanostructures in biodiagnostics, Chem Rev 105, 1547–1562.CrossRefGoogle Scholar
  4. 4.
    Langer, R., and Tirrell, D. A. (2004) Designing materials for biology and medicine, Nature 428, 487–492.CrossRefGoogle Scholar
  5. 5.
    Wong, L. S., Khan, F., and Micklefield, J. (2009) Selective Covalent Protein Immobilization: Strategies and Applications, Chem Rev 109, 4025–4053.CrossRefGoogle Scholar
  6. 6.
    Williams, B. A. R., Lund, K., Liu, Y., Yan, H., and Chaput, J. C. (2007) Self-assembled peptide nanoarrays: An approach to studying protein-protein interactions, Angew Chem Int Edit 46, 3051–3054.CrossRefGoogle Scholar
  7. 7.
    Winssinger, N., Pianowski, Z., and Debaene, F. (2007) Probing biology with small molecule microarrays (SMM), Top Curr Chem 278, 311–342.CrossRefGoogle Scholar
  8. 8.
    (2004) Nanobiotechnology Wiley-VCH, Weinheim.Google Scholar
  9. 9.
    (2005) Nanofabrication Towards Biomedical Applications, Wiley-VCH, Weinheim.Google Scholar
  10. 10.
    Tan, P. K., Downey, T. J., Spitznagel, E. L., Xu, P., Fu, D., Dimitrov, D. S., Lempicki, R. A., Raaka, B. M., and Cam, M. C. (2003) Evaluation of gene expression measurements from commercial microarray platforms, Nucleic Acids Res 31, 5676–5684.CrossRefGoogle Scholar
  11. 11.
    Becerril, H. A., and Woolley, A. T. (2009) DNA-templated nanofabrication, Chem Soc Rev 38, 329–337.CrossRefGoogle Scholar
  12. 12.
    Niemeyer, C. M. (2001) Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew Chem Int Edit 40, 4128–4158.CrossRefGoogle Scholar
  13. 13.
    Drummond, T. G., Hill, M. G., and Barton, J. K. (2003) Electrochemical DNA sensors, Nat Biotechnol 21, 1192–1199.CrossRefGoogle Scholar
  14. 14.
    Rant, U., Arinaga, K., Scherer, S., Pringsheim, E., Fujita, S., Yokoyama, N., Tornow, M., and Abstreiter, G. (2007) Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets, P Natl Acad Sci USA 104, 17364–17369.CrossRefGoogle Scholar
  15. 15.
    Brucale, M., Zuccheri, G., and Samori, B. (2006) Mastering the complexity of DNA nanostructures, Trends Biotechnol 24, 235–243.CrossRefGoogle Scholar
  16. 16.
    (2002) Methods in Molecular Biology Vol. 170, Humana Press, Totowa, NJ.Google Scholar
  17. 17.
    (2007) Nanobiotechnology II, Wiley-VCH, Weinheim.Google Scholar
  18. 18.
    Heise, C., and Bier, F. F. (2005) Immobilization of DNA on microarrays, Top Curr Chem 261, 1–25.Google Scholar
  19. 19.
    Luderer, F., and Walschus, U. (2005) Immobilization of oligonucleoticles for biochemical sensing by self-assembled monolayers: Thiol-organic bonding on gold and silanization on silica surfaces, Top Curr Chem 260, 37–56.CrossRefGoogle Scholar
  20. 20.
    Murphy, J. N., Cheng, A. K. H., Yu, H. Z., and Bizzotto, D. (2009) On the Nature of DNA Self-Assembled Monolayers on Au: Measuring Surface Heterogeneity with Electrochemical in Situ Fluorescence Microscopy, J Am Chem Soc 131, 4042–4050.CrossRefGoogle Scholar
  21. 21.
    Shumaker-Parry, J. S., Zareie, M. H., Aebersold, R., and Campbell, C. T. (2004) Microspotting streptavidin and double-stranded DNA Arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy, Anal Chem 76, 918–929.CrossRefGoogle Scholar
  22. 22.
    Smith, C. L., Milea, J. S., and Nguyen, G. H. (2005) Immobilization of nucleic acids using biotin-strept(avidin) systems, Top Curr Chem 261, 63–90.CrossRefGoogle Scholar
  23. 23.
    Takahashi, S., Matsuno, H., Furusawa, H., and Okahata, Y. (2007) Kinetic analyses of divalent cation-dependent EcoRV digestions on a DNA-immobilized quartz crystal microbalance, Anal Biochem 361, 210–217.CrossRefGoogle Scholar
  24. 24.
    Ladd, J., Boozer, C., Yu, Q. M., Chen, S. F., Homola, J., and Jiang, S. (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge, Langmuir 20, 8090–8095.CrossRefGoogle Scholar
  25. 25.
    Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y., and Ingber, D. E. (2001) Soft lithography in biology and biochemistry, Annu Rev Biomed Eng 3, 335–373.CrossRefGoogle Scholar
  26. 26.
    Noh, H., Hung, A. M., Choi, C., Lee, J. H., Kim, J. Y., Jin, S., and Cha, J. N. (2009) 50 nm DNA Nanoarrays Generated from Uniform Oligonucleotide Films, Acs Nano 3, 2376–2382.CrossRefGoogle Scholar
  27. 27.
    Yu, A. A., Savas, T. A., Taylor, G. S., Guiseppe-Elie, A., Smith, H. I., and Stellacci, F. (2005) Supramolecular nanostamping: Using DNA as movable type, Nano Lett 5, 1061–1064.CrossRefGoogle Scholar
  28. 28.
    Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W., and Mirkin, C. A. (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836–1838.CrossRefGoogle Scholar
  29. 29.
    Rodolfa, K. T., Bruckbauer, A., Zhou, D. J., Korchev, Y. E., and Klenerman, D. (2005) Two-component graded deposition of biomolecules with a double-barreled ­nanopipette, Angew Chem Int Edit 44, 6854–6859.CrossRefGoogle Scholar
  30. 30.
    Cherniavskaya, O., Chen, C. J., Heller, E., Sun, E., Provezano, J., Kam, L., Hone, J., Sheetz, M. P., and Wind, S. J. (2005) Fabrication and surface chemistry of nanoscale bioarrays designed for the study of cytoskeletal protein binding interactions and their effect on cell motility, J Vac Sci Technol B 23, 2972–2978.CrossRefGoogle Scholar
  31. 31.
    (1990) Methods in Enzymology Vol. 184, Academic press.Google Scholar
  32. 32.
    Nelson, K. E., Gamble, L., Jung, L. S., Boeckl, M. S., Naeemi, E., Golledge, S. L., Sasaki, T., Castner, D. G., Campbell, C. T., and Stayton, P. S. (2001) Surface characterization of mixed self-assembled monolayers designed for streptavidin immobilization, Langmuir 17, 2807–2816.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matteo Palma
    • 1
    Email author
  • Justin J. Abramson
  • Alon A. Gorodetsky
  • Colin Nuckolls
  • Michael P. Sheetz
  • Shalom J. Wind
  • James Hone
  1. 1.Department of Mechanical Engineering & Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations