Synthesis and Characterization of Self-Assembled DNA Nanostructures

  • Chenxiang LinEmail author
  • Yonggang Ke
  • Rahul Chhabra
  • Jaswinder Sharma
  • Yan Liu
  • Hao Yan
Part of the Methods in Molecular Biology book series (MIMB, volume 749)


The past decade witnessed the fast evolvement of structural DNA nanotechnology, which uses DNA as blueprint and building material to construct artificial nanostructures. Using branched DNA as the main building block (also known as a “tile”) and cohesive single-stranded DNA (ssDNA) ends to designate the pairing strategy for tile–tile recognition, one can rationally design and assemble complicated nanoarchitectures from specifically designed DNA oligonucleotides. Objects in both two- and three-dimensions with a large variety of geometries and topologies have been built from DNA with excellent yield; this development enables the construction of DNA-based nanodevices and DNA-template directed organization of other molecular species. The construction of such nanoscale objects constitutes the basis of DNA nanotechnology. This chapter describes the protocol for the preparation of ssDNA as starting material, the self-assembly of DNA nanostructures, and some of the most commonly used methods to characterize the self-assembled DNA nanostructures.

Key words

DNA nanotechnology Self-assembly Electrophoresis Atomic force microscopy 



This work was supported by grants from the National Science Foundation (NSF), the Army Research Office (ARO), and the Technology and Research Initiative Fund from Arizona State University to Y.L. and by grants from NSF, ARO, Air Force Office of Scientific Research, Office of Naval Research, and the National Institute of Health to H.Y.


  1. 1.
    Seeman, N. C. (1982) Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247.CrossRefGoogle Scholar
  2. 2.
    Chen J., and Seeman, N. C. (1991) The ­synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633.CrossRefGoogle Scholar
  3. 3.
    Seeman, N. C. (2003) DNA in a material world. Nature 421, 427–431.CrossRefGoogle Scholar
  4. 4.
    Deng, Z. X., Lee, S. H., and Mao, C. D. (2005) DNA as nanoscale building blocks. J. Nanosci. Nanotechnol. 5, 1954–1963.CrossRefGoogle Scholar
  5. 5.
    Turberfield, A. J. (2003) DNA as an engineering material. Phys. World 16, 43–46.Google Scholar
  6. 6.
    Lin, C., Liu, Y., Rinker, S., and Yan, H. (2006) DNA Tile based self-assembly: building ­complex nanoarchitectures. ChemphysChem 7, 1641–1647.CrossRefGoogle Scholar
  7. 7.
    Feldkamp, U., and Niemeyer, C. M. (2006) Rational fesign of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45, 1856–1876.CrossRefGoogle Scholar
  8. 8.
    Aldaye, F. A., Palmer, A. L., and Sleiman, H. F. (2008) Assembling materials with DNA as the guide. Science 321, 1795–1799.CrossRefGoogle Scholar
  9. 9.
    Yan, H., Park, S. H., Ginkelstein, G., Reif, J. H., and LaBean, T. H. (2003) DNA templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884.CrossRefGoogle Scholar
  10. 10.
    Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton, T. A., and Kiehl, R. A. (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347.CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Liu, Y., Ke, Y., and Yan, H. (2006) Periodic square-like gold nanoparticle arrays template by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251.CrossRefGoogle Scholar
  12. 12.
    Sharma, J., Chhabra, R., Liu, Y., Ke, Y., and Yan, H. (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 45, 730–735.CrossRefGoogle Scholar
  13. 13.
    Zheng, J., Constantinou, P. E., Micheel, C., Alivisatos, A. P., Kiehl, R. A., and Seeman N. C. (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504.CrossRefGoogle Scholar
  14. 14.
    Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116. Google Scholar
  15. 15.
    Sharma, J., Ke, Y., Lin, C., Chhabra, R., Wang, Q., Nangreave, J., Liu, Y., and Yan, H. (2008) DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew. Chem. Int. Ed. 47, 5157–5159.CrossRefGoogle Scholar
  16. 16.
    Aldaye, F. A., and Sleiman, H. F. (2006) Sequential self-assembly of a DNA hexagon as a template for the organization of gold ­nanoparticles. Angew. Chem. Int. Ed. 45, 2204–2209.CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Lin, C., Li, H., and Yan, H. (2005) Aptamer directed self-assembly of proteins on a DNA nanostructure. Angew. Chem. Int. Ed. 44, 4333–4338.CrossRefGoogle Scholar
  18. 18.
    Chhabra, R., Sharma, J., Ke, Y., Liu, Y., Rinker, S., Lindsay, S., and Yan, H. (2007) Spatially addressable multiprotein nano-arrays template by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305.CrossRefGoogle Scholar
  19. 19.
    Rinker, S., Ke, Y., Liu, Y., Chhabra, R., and Yan, H. (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol 3, 418–422.CrossRefGoogle Scholar
  20. 20.
    Duckworth, B. P., Chen, Y., Wollack, J. W., Sham, Y., Mueller, J. D., Taton, T. A., and Distefano, M. D. (2007) A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew. Chem. Int. Ed. 46, 8819–8822.CrossRefGoogle Scholar
  21. 21.
    Malo, J., Mitchell, J. C., Vénien-Bryan, C., Harris, J. R., Wille, H., Sherratt, D. J., and Turberfield, A. J. (2005) Engineering a 2D protein-DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061.CrossRefGoogle Scholar
  22. 22.
    Liedl, T., Sobey, T. L., and Simmel, F. C. (2007) DNA based nano-devices. Nanotoday 2, 36–41.Google Scholar
  23. 23.
    Seeman N. C. (2005) From genes to machines: DNA nanomechanical devices. Trends. Biochem. Sci. 30, 119–125.CrossRefGoogle Scholar
  24. 24.
    Bath, J., and Turberfield, A. J. (2007) DNA nanomachines. Nat. Nanotechnol. 2, 275–284.CrossRefGoogle Scholar
  25. 25.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.CrossRefGoogle Scholar
  26. 26.
    Birac, J. J., Sherman, W. B., Kopatsh, J., Constantinou, P. E., and Seeman, N. C. (2006) GIDEON, A program for design in structural DNA nanotechnology. J. Mol. Graphics Model. 25, 470–480.CrossRefGoogle Scholar
  27. 27.
    Williams, S., Lund, K., Lin, C., Wonka, P., Lindsay, S., and Yan, H. (2008) Tiamat: a three-dimensional editing tool for complex DNA structures. The 14th International Meeting on DNA Computing, Prague, Czech Republic.Google Scholar
  28. 28.
    Nanoengineer-1 is a molecular design program developed by Nanorex, Inc (Bloomfield Hills, MI).
  29. 29.
    Seeman, N. C. (1990) De novo design of sequences for nucleic acid structure engineering. J. Biomol. Struct. Dynam. 8, 573–581.Google Scholar
  30. 30.
    Wei, B., Wang, Z., and Mi, Y. (2007) Uniquimer: software of de novo DNA sequence generation for DNA self-assembly–an introduction and the related applications in DNA self-assembly. J. Comput. Theor. Nanosci. 4, 133–141.Google Scholar
  31. 31.
    Ke, Y., Liu, Y., Zhang, J., and Yan, H. (2006) A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128, 4414–4421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chenxiang Lin
    • 1
    Email author
  • Yonggang Ke
  • Rahul Chhabra
  • Jaswinder Sharma
  • Yan Liu
  • Hao Yan
  1. 1.Dana-Farber Cancer InstituteWyss Institute at Harvard UniversityBostonUSA

Personalised recommendations