Skip to main content

Characterizing Somatic Hypermutation and Gene Conversion in the Chicken DT40 Cell System

  • Protocol
  • First Online:
Immune Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 748))

Abstract

The secondary immunoglobulin gene diversification processes, somatic hypermutation (SHM), immunoglobulin gene conversion (GCV), and class switch recombination, are important for efficient humoral immune responses. They require the action of activation-induced cytidine deaminase, an enzyme that deaminates cytosine in the context of single-stranded DNA. The chicken DT40 B-cell line is an important model system for exploring the mechanisms of SHM and GCV, as both processes occur constitutively without the need for stimulation. In addition, standard gene targeting strategies can be used for defined manipulations of the DT40 genome. Thus, these cells represent an excellent model of choice for genetic studies of SHM and GCV. Problems arising from defects in early B-cell development that are of concern when using genetically engineered mice are avoided in this system. Here, we describe how to perform gene targeting in DT40 cells and how to determine the effects of such modifications on SHM and GCV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maizels, N. (2005) Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46.

    Article  PubMed  CAS  Google Scholar 

  2. Neuberger, M. S., Harris, R. S., Di Noia, J., and Petersen-Mahrt, S. K. (2003) Immunity through DNA deamination. Trends Biochem Sci 28, 305–12.

    Article  PubMed  CAS  Google Scholar 

  3. Arakawa, H., and Buerstedde, J. M. (2009) Activation-induced cytidine deaminase-­mediated hypermutation in the DT40 cell line. Philos Trans R Soc Lond B Biol Sci 364, 639–44.

    Article  PubMed  CAS  Google Scholar 

  4. Kothapalli, N., Norton, D. D., and Fugmann, S. D. (2008) Cutting Edge: A cis-Acting DNA Element Targets AID-Mediated Sequence Diversification to the Chicken Ig Light Chain Gene Locus. J Immunol 180, 2019–23.

    PubMed  CAS  Google Scholar 

  5. Blagodatski, A., Batrak, V., Schmidl, S., Schoetz, U., Caldwell, R. B., Arakawa, H., and Buerstedde, J. M. (2009) A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 5, e1000332.

    Article  PubMed  Google Scholar 

  6. Koller, B. H., and Smithies, O. (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10, 705–30.

    Article  PubMed  CAS  Google Scholar 

  7. Buerstedde, J. M., and Takeda, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67, 179–88.

    Article  PubMed  CAS  Google Scholar 

  8. Buerstedde, J. M., Reynaud, C. A., Humphries, E. H., Olson, W., Ewert, D. L., and Weill, J. C. (1990) Light chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J. 9, 921–7.

    PubMed  CAS  Google Scholar 

  9. Arakawa, H., Lodygin, D., and Buerstedde, J. M. (2001) Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnol. 1, 7.

    Article  PubMed  CAS  Google Scholar 

  10. Peitz, M., Pfannkuche, K., Rajewsky, K., and Edenhofer, F. (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci USA 99, 4489–94.

    Article  PubMed  CAS  Google Scholar 

  11. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–8.

    Article  PubMed  CAS  Google Scholar 

  12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J Mol Biol 215, 403–10.

    PubMed  CAS  Google Scholar 

  13. Arakawa, H., and Buerstedde, J. M. (2006) Dt40 gene disruptions: a how-to for the design and the construction of targeting vectors. Subcell Biochem 40, 1–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian D. Fugmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kothapalli, N., Fugmann, S.D. (2011). Characterizing Somatic Hypermutation and Gene Conversion in the Chicken DT40 Cell System. In: Rast, J., Booth, J. (eds) Immune Receptors. Methods in Molecular Biology, vol 748. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-139-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-139-0_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-138-3

  • Online ISBN: 978-1-61779-139-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics