Advertisement

A TiO2 Nanoparticle System for Sacrificial Solar H2 Production Prepared by Rational Combination of a Hydrogenase with a Ruthenium Photosensitizer

  • Erwin Reisner
  • Fraser A. Armstrong
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 743)

Abstract

A hybrid system comprising a hydrogenase and a photosensitizer co-attached to a nanoparticle serves as a rational model for fast dihydrogen (H2) production using visible light. This chapter describes a stepwise procedure for preparing TiO2 nanoparticles functionalized with a hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) and a tris(bipyridyl)ruthenium photosensitizer (RuP). Upon irradiation with visible light, these particles produce H2 from neutral water at room temperature in the presence of a sacrificial electron donor – a test-system for the cathodic half reaction of water splitting. In particular, we describe how a hydrogenase and a photosensitizer with desired properties, including strong adsorption on TiO2, can be selected by electrochemical methods. The catalyst Db [NiFeSe]-H is selected for its high H2 production activity even when H2 and traces of O2 are present. Adsorption of Db [NiFeSe]-H and RuP on TiO2 electrodes results in high electrochemical and photocatalytic activities that translate into nanoparticles exhibiting efficient light harvesting, charge separation, and sacrificial H2 generation.

Key words

Hydrogenase H2 production ruthenium titanium dioxide electrochemistry photochemistry 

Notes

Acknowledgments

This work was supported by BBSRC (BB/D52222X/1 and BB/H003878-1) and EPSRC (Supergen 5 and EP/H00338X/1).

References

  1. 1.
    Reisner, E., Fontecilla-Camps, J. C., and Armstrong, F. A. (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 550–552.Google Scholar
  2. 2.
    Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C., and Armstrong, F. A. (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18457–18466.CrossRefGoogle Scholar
  3. 3.
    Vincent, K. A., Parkin, A., and Armstrong, F. A. (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107, 4366–4413.CrossRefGoogle Scholar
  4. 4.
    Armstrong, F. A., Belsey, N. A., Cracknell, J. A., Goldet, G., Parkin, A., Reisner, E., Vincent, K. A., and Wait, A. F. (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem. Soc. Rev. 38, 36–51.CrossRefGoogle Scholar
  5. 5.
    Parkin, A., Goldet, G., Cavazza, C., Fontecilla-Camps, J. C., and Armstrong, F. A. (2008) The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J. Am. Chem. Soc. 130, 13410–13416.CrossRefGoogle Scholar
  6. 6.
    Cuendet, P., Rao, K. K., Grätzel, M., and Hall, D. O. (1986) Light induced hydrogen evolution in a hydrogenase-titanium dioxide particle system by direct electron transfer or via rhodium complexes. Biochimie 68, 217–221.CrossRefGoogle Scholar
  7. 7.
    Nikandrov, V. V., Shlyk, M. A., Zorin, N. A., Gogotov, I. N., and Krasnovsky, A. A. (1988) Efficient photoinduced electron transfer from inorganic semiconductor titanium dioxide to bacterial hydrogenase. FEBS Lett. 234, 111–114.CrossRefGoogle Scholar
  8. 8.
    Hidaka, H., Shimura, T., Ajisaka, K., Horikoshi, S., Zhao, J., and Serpone, N. (1997) Photoelectrochemical decomposition of amino acids on a TiO2/OTE particulate film electrode. J. Photochem. Photobiol. A 109, 165–170.CrossRefGoogle Scholar
  9. 9.
    Hatchikian, E. C., Bruschi, M., Le Gall, J., Forget, N., and Bovier-Lapierre, G. (1978) Characterization of the periplasmic hydrogenase from Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 82, 451–461.CrossRefGoogle Scholar
  10. 10.
    Penicaud, V., Odobel, F., and Bujoli, B. (1998) Facile and efficient syntheses of 2,2-bipyridine-based bis(phosphonic) acids. Tetrahedron Lett. 39, 3689–3692.CrossRefGoogle Scholar
  11. 11.
    Trammell, S. A., Moss, J. A., Yang, J. C., Nakhle, B. M., Slate, C. A., Odobel, F., Sykora, M., Erickson, B. W., and Meyer, T. J. (1999) Sensitization of TiO2 by phosphonate-derivatized proline assemblies. Inorg. Chem. 38, 3665–3669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry, University of CambridgeCambridgeUK

Personalised recommendations