Skip to main content

Kinesin I ATPase Manipulates Biohybrids Formed from Tubulin and Carbon Nanotubes

  • Protocol
  • First Online:
Nanoscale Biocatalysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

This chapter describes a method for the formation of novel protein–nanotube hybrid conjugates. Specifically, we took advantage of the self-assembly and self-recognition properties of tubulin cytoskeletal protein immobilized onto carbon nanotubes to form nanotube-based biohybrids. Further biohybrid hierarchical integration in assemblies enabled molecular-level manipulation on engineered surfaces, as demonstrated with biocatalyst kinesin 1 ATPase molecular motor. The method presented herein can be extended for the preparation of biocatalyst-based or protein-based assemblies to be used as sensors or biological templates for nanofabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asuri, P., et al. (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811.

    Article  CAS  Google Scholar 

  2. Gazit, E. (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J. 274(2), 317–322.

    Article  CAS  Google Scholar 

  3. Lenihan, J. S., et al. (2004) Protein immobilization on carbon nanotubes through a molecular adapter. J. Nanosci. Nanotechnol. 4(6), 600–604.

    Article  CAS  Google Scholar 

  4. Cui, D. (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci. Nanotechnol. 7(4–5), 1298–1314.

    Article  CAS  Google Scholar 

  5. Keren, K., et al. (2003) DNA-templated carbon nanotube field-effect transistor. Science 302(5649), 1380–1382.

    Article  CAS  Google Scholar 

  6. Besteman, K., et al. (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3(6), 727–730.

    Article  CAS  Google Scholar 

  7. Stafslien, S. J., et al. (2007) Combinatorial materials research applied to the development of new surface coatings VI: An automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev. Sci. Instrum. 78(7), 072204.

    Article  Google Scholar 

  8. Bianco, A., and Prato, M. (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 15(20), 1765–1768.

    Article  CAS  Google Scholar 

  9. Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21(10), 1171–1178.

    Article  CAS  Google Scholar 

  10. IIjima, S. (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.

    Article  CAS  Google Scholar 

  11. Hu, J., Odom, T. W., and Lieber, C. M. (1999) Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445.

    Article  CAS  Google Scholar 

  12. Pei, S., et al. (2009) The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 20, 235707–235714.

    Article  Google Scholar 

  13. Wei, J., Zhu, H., and Wu, D. (2004) Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett. 84, 4869–4872.

    Article  CAS  Google Scholar 

  14. Hart, A. J., van Laake, L., and Slocum, A. H. (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3(5), 772–777.

    Article  CAS  Google Scholar 

  15. Dinu, C. Z., et al. (2007) Cellular motors for molecular manufacturing. Anat. Rec. (Hoboken) 290(10), 1203–1212.

    CAS  Google Scholar 

  16. Nogales, E., and Wang, H. W. (2006) Structural intermediates in microtubule assembly and disassembly: How and why? Curr. Opin. Cell Biol. 18(2), 179–184.

    Article  CAS  Google Scholar 

  17. Zhang, Y., et al. (2007) Chemically encapsulated structural elements for probing the mechanical responses of biologically inspired systems. Langmuir 23(15), 8129–8134.

    Article  CAS  Google Scholar 

  18. Brady, S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317(6032), 73–75.

    Article  CAS  Google Scholar 

  19. Hollenbeck, P. J. (1990) Cell biology. Cytoskeleton on the move. Nature 343(6257), 408–409.

    Article  CAS  Google Scholar 

  20. Tanaka, Y., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93(7), 1147–1158.

    Article  CAS  Google Scholar 

  21. Muresan, V. (2000) One axon, many kinesins: What’s the logic? J. Neurocytol. 29(11–12), 799–818.

    Article  CAS  Google Scholar 

  22. Dinu, C. Z., Bale, S. S., Zhu, G., and Dordick, J. S. (2009) Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small, 5(3), 310–315.

    Google Scholar 

  23. Shelanski, M. L., Gaskin, F., and Cantor, C. R. (1973) Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70(3), 765–768.

    Article  CAS  Google Scholar 

  24. Coy, D. L., Wagenbach, M., and Howard, J. (1999) Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274(6), 3667–3671.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSF Nanoscale Science and Engineering Center (DMR 0642573). We thank Stefan Diez (Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany) for providing kinesin and Douglas B. Chrisey (Department of Materials Science and Engineering, Rensselaer Polytechnic Institute) for the fluorescence microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cerasela Zoica Dinu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dinu, C.Z., Bale, S.S., Dordick, J.S. (2011). Kinesin I ATPase Manipulates Biohybrids Formed from Tubulin and Carbon Nanotubes. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics