Kinesin I ATPase Manipulates Biohybrids Formed from Tubulin and Carbon Nanotubes

  • Cerasela Zoica Dinu
  • Shyam Sundhar Bale
  • Jonathan S. Dordick
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 743)

Abstract

This chapter describes a method for the formation of novel protein–nanotube hybrid conjugates. Specifically, we took advantage of the self-assembly and self-recognition properties of tubulin cytoskeletal protein immobilized onto carbon nanotubes to form nanotube-based biohybrids. Further biohybrid hierarchical integration in assemblies enabled molecular-level manipulation on engineered surfaces, as demonstrated with biocatalyst kinesin 1 ATPase molecular motor. The method presented herein can be extended for the preparation of biocatalyst-based or protein-based assemblies to be used as sensors or biological templates for nanofabrication.

Key words

Tubulin carbon nanotube self-assembly self-recognition biohybrid kinesin-based manipulation 

References

  1. 1.
    Asuri, P., et al. (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811.CrossRefGoogle Scholar
  2. 2.
    Gazit, E. (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J. 274(2), 317–322.CrossRefGoogle Scholar
  3. 3.
    Lenihan, J. S., et al. (2004) Protein immobilization on carbon nanotubes through a molecular adapter. J. Nanosci. Nanotechnol. 4(6), 600–604.CrossRefGoogle Scholar
  4. 4.
    Cui, D. (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci. Nanotechnol. 7(4–5), 1298–1314.CrossRefGoogle Scholar
  5. 5.
    Keren, K., et al. (2003) DNA-templated carbon nanotube field-effect transistor. Science 302(5649), 1380–1382.CrossRefGoogle Scholar
  6. 6.
    Besteman, K., et al. (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3(6), 727–730.CrossRefGoogle Scholar
  7. 7.
    Stafslien, S. J., et al. (2007) Combinatorial materials research applied to the development of new surface coatings VI: An automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev. Sci. Instrum. 78(7), 072204.CrossRefGoogle Scholar
  8. 8.
    Bianco, A., and Prato, M. (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 15(20), 1765–1768.CrossRefGoogle Scholar
  9. 9.
    Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21(10), 1171–1178.CrossRefGoogle Scholar
  10. 10.
    IIjima, S. (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.CrossRefGoogle Scholar
  11. 11.
    Hu, J., Odom, T. W., and Lieber, C. M. (1999) Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445.CrossRefGoogle Scholar
  12. 12.
    Pei, S., et al. (2009) The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 20, 235707–235714.CrossRefGoogle Scholar
  13. 13.
    Wei, J., Zhu, H., and Wu, D. (2004) Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett. 84, 4869–4872.CrossRefGoogle Scholar
  14. 14.
    Hart, A. J., van Laake, L., and Slocum, A. H. (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3(5), 772–777.CrossRefGoogle Scholar
  15. 15.
    Dinu, C. Z., et al. (2007) Cellular motors for molecular manufacturing. Anat. Rec. (Hoboken) 290(10), 1203–1212.Google Scholar
  16. 16.
    Nogales, E., and Wang, H. W. (2006) Structural intermediates in microtubule assembly and disassembly: How and why? Curr. Opin. Cell Biol. 18(2), 179–184.CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., et al. (2007) Chemically encapsulated structural elements for probing the mechanical responses of biologically inspired systems. Langmuir 23(15), 8129–8134.CrossRefGoogle Scholar
  18. 18.
    Brady, S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317(6032), 73–75.CrossRefGoogle Scholar
  19. 19.
    Hollenbeck, P. J. (1990) Cell biology. Cytoskeleton on the move. Nature 343(6257), 408–409.CrossRefGoogle Scholar
  20. 20.
    Tanaka, Y., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93(7), 1147–1158.CrossRefGoogle Scholar
  21. 21.
    Muresan, V. (2000) One axon, many kinesins: What’s the logic? J. Neurocytol. 29(11–12), 799–818.CrossRefGoogle Scholar
  22. 22.
    Dinu, C. Z., Bale, S. S., Zhu, G., and Dordick, J. S. (2009) Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small, 5(3), 310–315.Google Scholar
  23. 23.
    Shelanski, M. L., Gaskin, F., and Cantor, C. R. (1973) Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70(3), 765–768.CrossRefGoogle Scholar
  24. 24.
    Coy, D. L., Wagenbach, M., and Howard, J. (1999) Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274(6), 3667–3671.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cerasela Zoica Dinu
    • 1
    • 2
  • Shyam Sundhar Bale
    • 1
  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroyUSA
  2. 2.Department of Chemical EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations