Advertisement

Molecular Assembly-Assisted Biocatalytic Reactions in Ionic Liquids

  • Muhammad Moniruzzaman
  • Masahiro Goto
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 743)

Abstract

Room temperature ionic liquids (RTILs), having no measurable vapor pressure, represent an interesting class of tunable designer solvents. Due to their many unique properties, ILs have been used as attractive alternatives to environmentally harmful ordinary organic solvents in a wide range of applications including enzymatic biotransformation. Compared to conventional organic solvents, ILs offer many advantages for biocatalysis such as enhanced conversion rates, high enantioselectivity, better enzyme stability, and improved catalyst recoverability and recyclability. However, biocatalysis in ILs has not yet fully achieved its potential because many biocatalysts are insoluble in most ILs. This limitation could be overcome by the formation of nano/micrometer-sized aqueous microemulsion droplets in an IL continuous phase (referred to as water-in-IL microemulsions) stabilized by a layer of surfactants. Enzymes can be dissolved in such water droplets and protected from the unfavorable effect of ILs by the surfactant layer. In this chapter, a simple and effective method for the development of aqueous microemulsion droplets in a hydrophobic IL comprising an anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (AOT) is presented. For this approach, we have synthesized a hydrophobic IL [C8mim][Tf2N] (1-octyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl) amide) containing a long pendant hydrocarbon chain to facilitate the dissolution of AOT molecules. A detailed description of the procedure for the potential use of this newly developed water-in-IL reverse microemulsion for biocatalysis is also included.

Key words

Ionic liquids enzymatic biocatalysis lipase horseradish peroxidase AOT biotransformation microemulsions water droplets 1-hexanol green chemistry 

Notes

Acknowledgments

We gratefully acknowledge the JSPS (Japan Society for the Promotion of Science) for a JSPS Postdoctoral Fellowship (M. Moniruzzaman) and the necessary funding for this work. The authors would like to thank Prof. N. Kamiya for very helpful discussions.

References

  1. 1.
    Wasserscheid, P., and Welton, T. (ed.) (2003) Ionic Liquids in Synthesis. Wiley-VCH, Weinheim.Google Scholar
  2. 2.
    Rogers, R. D., and Seddon, K. R. (ed.) (2002) Ionic Liquids: Industrial Applications for Green Chemistry. ACS Symposium Series, Vol. 818. American Chemical Society, Washington, DC.Google Scholar
  3. 3.
    Welton, T. (1999) Room temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084.CrossRefGoogle Scholar
  4. 4.
    Earle, M. J., Esperanca, J. M. S. S., Gilea, M. A., Lopes, J. N. C., Rebelo, L. P. N., Magee, J. W., Seddon, J. A., and Widegren, J. A. (2006) The distillation and volatility of ionic liquids. Nature 439, 831–834.CrossRefGoogle Scholar
  5. 5.
    Anderson, J. L., Ding, J., Welton, T., and Armstrong, D. W. (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254.CrossRefGoogle Scholar
  6. 6.
    van Rantwijk, F., and Sheldon, R. A. (2007) Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785.CrossRefGoogle Scholar
  7. 7.
    Yang, Z., and Pan, W. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37, 19–28.CrossRefGoogle Scholar
  8. 8.
    Turner, M. B., Spear, S. K., Huddleston, J. G., Holbrey, J. D., and Rogers, R. D. (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem. 5, 443–447.CrossRefGoogle Scholar
  9. 9.
    Kragl, U., Eckstein, M., and Kaftzik, N. (2002) Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13, 565–571.CrossRefGoogle Scholar
  10. 10.
    Erbeldinger, M., Mesiano, A. J., and Russel, A. J. (2000) Enzymatic catalysis of z-aspartame in ionic liquid: An alternative to enzymatic catalysis in organic solvents. Biotechnol. Prog. 16, 1129–1131.CrossRefGoogle Scholar
  11. 11.
    Nakashima, K., Maruyama, T., Kamiya, N., and Goto, M. (2005) Comb-shaped poly (ethylene glycol)-modified subtilisin Carlsberg is soluble and highly active in ionic liquids. Chem. Commun. 4297–4299.Google Scholar
  12. 12.
    Lozano, P., de Diego, T., and Iborra, J. L. (2006) Immobilization of enzymes for use in ionic liquids. In Methods in Biotechnology (Jones, J. M., ed.), Humana, Totowa, NJ, pp. 257–268.Google Scholar
  13. 13.
    Park, S., and Kazlauskas, R. J. (2001) Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio- and region-selective acylation. J. Org. Chem. 66, 8395–8401.CrossRefGoogle Scholar
  14. 14.
    Carrea, G. (1984) Biocatalysis in water-organic solvent two-phase systems. Trends Biotechnol. 2, 102–106.CrossRefGoogle Scholar
  15. 15.
    Martinek, K., Levashov, A. V., Khmelnitskii, Y. L., Klyachko, N. L., and Berezin, I. V. (1982) Colloidal solution of water in organic solvents: A microheterogenous medium for enzymatic reactions. Science 218, 889–891.CrossRefGoogle Scholar
  16. 16.
    Luisi, P. L., and Magid, I. J. (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit. Rev. Biochem. 20, 409–474.CrossRefGoogle Scholar
  17. 17.
    Ayala, A. G., Kamat, S., Beckman, E. J., and Russell, A. J. (1992) Protein extraction and activity in reverse micelles of a nonionic surfactant. Biotechnol. Bioeng. 29, 806–814.CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Li, N., Zheng, L., Zhao, X., Zhang, S., Han, B., Hou, W., and Li, G. (2006) A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween-20/H2O microemulsions and their performance characterization by UV-vis spectroscopy. Green Chem. 8, 43–49.CrossRefGoogle Scholar
  19. 19.
    Moniruzzaman, M., Kamiya, N., Nakashima, K., and Goto, M. (2008) Formation of reverse micelles in a room temperature ionic liquid. Chem. Phys. Chem. 9, 689–692.Google Scholar
  20. 20.
    Gao, Y., Han, B., Han, B. X., Li, G., Shen, D., Li, Z., Du, J., Hou, W., and Zhang, G. (2005) TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate micro-emulsions. Langmuir 21, 5681–5684.CrossRefGoogle Scholar
  21. 21.
    De, T., and Maitra, A. (1995) Solution behavior of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193.CrossRefGoogle Scholar
  22. 22.
    Moulik, S. P., Digout, L. G., Aylward, W. M., and Palepu, R. (2000) Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir 16, 3101–3106.CrossRefGoogle Scholar
  23. 23.
    Moniruzzaman, M., Kamiya, N., Nakashima, K., and Goto, M. (2008) Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem. 10, 497–500.CrossRefGoogle Scholar
  24. 24.
    Moniruzzaman, M., Kamiya, N., and Goto, M. (2009) Biocatalysis in water-in-ionic liquid microemulsions: A case study with horseradish peroxidase. Langmuir 25, 977–982.CrossRefGoogle Scholar
  25. 25.
    Ritter, R. E., Undiks, U. P., and Levinger, N. E. (1998) Impact of counterion on water motion in Aerosol-OT reverse micelles. J. Am. Chem. Soc. 120, 6062–6067.CrossRefGoogle Scholar
  26. 26.
    Zulauf, M., and Eicke, H. F. (1979) Inverted micelles and microemulsions in ternary systems H2O/Aerosol-OT/isooctane as studied by photon correlation spectroscopy. J. Phys. Chem. 83, 480–486.CrossRefGoogle Scholar
  27. 27.
    Laia, C. A. T., López-Cornejo, P., Costa, S. M. B., d’Oliveira, J., and Martinho, J. M. G. (1998) Dynamic light scattering study of AOT microemulsions with nonaqueous polar additives in an oil continuous phase. Langmuir 14, 3531–3537.CrossRefGoogle Scholar
  28. 28.
    Azevedo, M., Fonseca, L. P., Graham, D. L., Cabral, J. M. S., and Prazeres, D. M. F. (2001) Behavior of horseradish peroxidase in AOT reverse micelles. Biocatal. Biotransform. 19, 213–233.CrossRefGoogle Scholar
  29. 29.
    Bonhôte, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178.CrossRefGoogle Scholar
  30. 30.
    Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., and Rogers, R. D. (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164.CrossRefGoogle Scholar
  31. 31.
    Meathly, A. C. (1955) Plant peroxidase. Methods Enzymol. 2, 801–813.CrossRefGoogle Scholar
  32. 32.
    Lee, S. H., Sung, S. H., Lee, S. B., and Koo, Y. M. (2006) Adverse effect of chloride impurities on lipase-catalyzed transesterifications in ionic liquids. Biotechnol. Lett. 28, 1335–1339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations