Skip to main content

Molecular Assembly-Assisted Biocatalytic Reactions in Ionic Liquids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

Room temperature ionic liquids (RTILs), having no measurable vapor pressure, represent an interesting class of tunable designer solvents. Due to their many unique properties, ILs have been used as attractive alternatives to environmentally harmful ordinary organic solvents in a wide range of applications including enzymatic biotransformation. Compared to conventional organic solvents, ILs offer many advantages for biocatalysis such as enhanced conversion rates, high enantioselectivity, better enzyme stability, and improved catalyst recoverability and recyclability. However, biocatalysis in ILs has not yet fully achieved its potential because many biocatalysts are insoluble in most ILs. This limitation could be overcome by the formation of nano/micrometer-sized aqueous microemulsion droplets in an IL continuous phase (referred to as water-in-IL microemulsions) stabilized by a layer of surfactants. Enzymes can be dissolved in such water droplets and protected from the unfavorable effect of ILs by the surfactant layer. In this chapter, a simple and effective method for the development of aqueous microemulsion droplets in a hydrophobic IL comprising an anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (AOT) is presented. For this approach, we have synthesized a hydrophobic IL [C8mim][Tf2N] (1-octyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl) amide) containing a long pendant hydrocarbon chain to facilitate the dissolution of AOT molecules. A detailed description of the procedure for the potential use of this newly developed water-in-IL reverse microemulsion for biocatalysis is also included.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wasserscheid, P., and Welton, T. (ed.) (2003) Ionic Liquids in Synthesis. Wiley-VCH, Weinheim.

    Google Scholar 

  2. Rogers, R. D., and Seddon, K. R. (ed.) (2002) Ionic Liquids: Industrial Applications for Green Chemistry. ACS Symposium Series, Vol. 818. American Chemical Society, Washington, DC.

    Google Scholar 

  3. Welton, T. (1999) Room temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084.

    Article  CAS  Google Scholar 

  4. Earle, M. J., Esperanca, J. M. S. S., Gilea, M. A., Lopes, J. N. C., Rebelo, L. P. N., Magee, J. W., Seddon, J. A., and Widegren, J. A. (2006) The distillation and volatility of ionic liquids. Nature 439, 831–834.

    Article  CAS  Google Scholar 

  5. Anderson, J. L., Ding, J., Welton, T., and Armstrong, D. W. (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254.

    Article  CAS  Google Scholar 

  6. van Rantwijk, F., and Sheldon, R. A. (2007) Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785.

    Article  Google Scholar 

  7. Yang, Z., and Pan, W. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37, 19–28.

    Article  CAS  Google Scholar 

  8. Turner, M. B., Spear, S. K., Huddleston, J. G., Holbrey, J. D., and Rogers, R. D. (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem. 5, 443–447.

    Article  CAS  Google Scholar 

  9. Kragl, U., Eckstein, M., and Kaftzik, N. (2002) Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13, 565–571.

    Article  CAS  Google Scholar 

  10. Erbeldinger, M., Mesiano, A. J., and Russel, A. J. (2000) Enzymatic catalysis of z-aspartame in ionic liquid: An alternative to enzymatic catalysis in organic solvents. Biotechnol. Prog. 16, 1129–1131.

    Article  CAS  Google Scholar 

  11. Nakashima, K., Maruyama, T., Kamiya, N., and Goto, M. (2005) Comb-shaped poly (ethylene glycol)-modified subtilisin Carlsberg is soluble and highly active in ionic liquids. Chem. Commun. 4297–4299.

    Google Scholar 

  12. Lozano, P., de Diego, T., and Iborra, J. L. (2006) Immobilization of enzymes for use in ionic liquids. In Methods in Biotechnology (Jones, J. M., ed.), Humana, Totowa, NJ, pp. 257–268.

    Google Scholar 

  13. Park, S., and Kazlauskas, R. J. (2001) Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio- and region-selective acylation. J. Org. Chem. 66, 8395–8401.

    Article  CAS  Google Scholar 

  14. Carrea, G. (1984) Biocatalysis in water-organic solvent two-phase systems. Trends Biotechnol. 2, 102–106.

    Article  CAS  Google Scholar 

  15. Martinek, K., Levashov, A. V., Khmelnitskii, Y. L., Klyachko, N. L., and Berezin, I. V. (1982) Colloidal solution of water in organic solvents: A microheterogenous medium for enzymatic reactions. Science 218, 889–891.

    Article  CAS  Google Scholar 

  16. Luisi, P. L., and Magid, I. J. (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit. Rev. Biochem. 20, 409–474.

    Article  CAS  Google Scholar 

  17. Ayala, A. G., Kamat, S., Beckman, E. J., and Russell, A. J. (1992) Protein extraction and activity in reverse micelles of a nonionic surfactant. Biotechnol. Bioeng. 29, 806–814.

    Article  Google Scholar 

  18. Gao, Y., Li, N., Zheng, L., Zhao, X., Zhang, S., Han, B., Hou, W., and Li, G. (2006) A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween-20/H2O microemulsions and their performance characterization by UV-vis spectroscopy. Green Chem. 8, 43–49.

    Article  CAS  Google Scholar 

  19. Moniruzzaman, M., Kamiya, N., Nakashima, K., and Goto, M. (2008) Formation of reverse micelles in a room temperature ionic liquid. Chem. Phys. Chem. 9, 689–692.

    CAS  Google Scholar 

  20. Gao, Y., Han, B., Han, B. X., Li, G., Shen, D., Li, Z., Du, J., Hou, W., and Zhang, G. (2005) TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate micro-emulsions. Langmuir 21, 5681–5684.

    Article  CAS  Google Scholar 

  21. De, T., and Maitra, A. (1995) Solution behavior of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193.

    Article  CAS  Google Scholar 

  22. Moulik, S. P., Digout, L. G., Aylward, W. M., and Palepu, R. (2000) Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir 16, 3101–3106.

    Article  CAS  Google Scholar 

  23. Moniruzzaman, M., Kamiya, N., Nakashima, K., and Goto, M. (2008) Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem. 10, 497–500.

    Article  CAS  Google Scholar 

  24. Moniruzzaman, M., Kamiya, N., and Goto, M. (2009) Biocatalysis in water-in-ionic liquid microemulsions: A case study with horseradish peroxidase. Langmuir 25, 977–982.

    Article  CAS  Google Scholar 

  25. Ritter, R. E., Undiks, U. P., and Levinger, N. E. (1998) Impact of counterion on water motion in Aerosol-OT reverse micelles. J. Am. Chem. Soc. 120, 6062–6067.

    Article  Google Scholar 

  26. Zulauf, M., and Eicke, H. F. (1979) Inverted micelles and microemulsions in ternary systems H2O/Aerosol-OT/isooctane as studied by photon correlation spectroscopy. J. Phys. Chem. 83, 480–486.

    Article  CAS  Google Scholar 

  27. Laia, C. A. T., López-Cornejo, P., Costa, S. M. B., d’Oliveira, J., and Martinho, J. M. G. (1998) Dynamic light scattering study of AOT microemulsions with nonaqueous polar additives in an oil continuous phase. Langmuir 14, 3531–3537.

    Article  CAS  Google Scholar 

  28. Azevedo, M., Fonseca, L. P., Graham, D. L., Cabral, J. M. S., and Prazeres, D. M. F. (2001) Behavior of horseradish peroxidase in AOT reverse micelles. Biocatal. Biotransform. 19, 213–233.

    Article  CAS  Google Scholar 

  29. Bonhôte, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178.

    Article  Google Scholar 

  30. Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., and Rogers, R. D. (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164.

    Article  CAS  Google Scholar 

  31. Meathly, A. C. (1955) Plant peroxidase. Methods Enzymol. 2, 801–813.

    Article  Google Scholar 

  32. Lee, S. H., Sung, S. H., Lee, S. B., and Koo, Y. M. (2006) Adverse effect of chloride impurities on lipase-catalyzed transesterifications in ionic liquids. Biotechnol. Lett. 28, 1335–1339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the JSPS (Japan Society for the Promotion of Science) for a JSPS Postdoctoral Fellowship (M. Moniruzzaman) and the necessary funding for this work. The authors would like to thank Prof. N. Kamiya for very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moniruzzaman, M., Goto, M. (2011). Molecular Assembly-Assisted Biocatalytic Reactions in Ionic Liquids. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics