Skip to main content

Genome-Wide Detection of Meiotic DNA Double-Strand Break Hotspots Using Single-Stranded DNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

The controlled fragmentation of chromosomes by DNA double-strand breaks (DSBs) initiates meiotic recombination, which is essential for meiotic chromosome segregation in most eukaryotes. This chapter describes a straightforward microarray-based approach to measure the genome-wide distribution of meiotic DSBs by detecting the single-stranded DNA (ssDNA) that transiently accumulates at DSB sites during recombination. The protocol outlined here has been optimized to detect meiotic DSBs in Saccharomyces cerevisiae. However, because ssDNA is a universal intermediate of homologous recombination, this method can ostensibly be adapted to discover and analyze programmed or damage-induced DSB hotspots in other organisms whose genome sequence is available.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Keeney, S., Giroux, C.N., and Kleckner, N. (1997) Meiosis-specific DNA double-strand breaks are catalyzed by spo11, a member of a widely conserved protein family. Cell 88, 375–384.

    Article  PubMed  CAS  Google Scholar 

  2. Bishop, D.K., and Zickler, D. (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.

    Article  PubMed  CAS  Google Scholar 

  3. Petes, T.D. (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2, 360–369.

    Article  PubMed  CAS  Google Scholar 

  4. Baudat, F., and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci USA 94, 5213–5218.

    Article  PubMed  CAS  Google Scholar 

  5. Game, J.C. (1992) Pulsed-field gel analysis of the pattern of DNA double-strand breaks in the Saccharomyces genome during meiosis. Dev Genet 13, 485–497.

    Article  PubMed  CAS  Google Scholar 

  6. Zenvirth, D., Arbel, T., Sherman, A., Goldway, M., Klein, S., and Simchen, G. (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J 11, 3441–3447.

    PubMed  CAS  Google Scholar 

  7. Gerton, J.L., DeRisi, J., Shroff, R., Lichten, M., Brown, P.O., and Petes, T.D. (2000) Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97, 11383–11390.

    Article  PubMed  CAS  Google Scholar 

  8. Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., Hochwagen, A., and Keeney, S. (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731.

    Article  PubMed  CAS  Google Scholar 

  9. Blitzblau, H.G., Bell, G.W., Rodriguez, J., Bell, S.P., and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-strand-break hotspots near centromeres and telomeres. Curr Biol 17, 2003–2012.

    Article  PubMed  CAS  Google Scholar 

  10. Buhler, C., Borde, V., and Lichten, M. (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double strand breaks in Saccharomyces cerevisiae. PLoS Biol 5, 2797–2808.

    Article  CAS  Google Scholar 

  11. Huberman, J.A., Spotila, L.D., Nawotka, K.A., el-Assouli, S.M., and Davis, L.R. (1987) The in vivo replication origin of the yeast 2 microns plasmid. Cell 51, 473–481.

    Article  PubMed  CAS  Google Scholar 

  12. Feng, W., Collingwood, D., Boeck, M.E., Fox, L.A., Alvino, G.M., Fangman, W.L., Raghuraman, M.K., and Brewer, B.J. (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8, 148–155.

    Article  PubMed  CAS  Google Scholar 

  13. Smyth, G.K. (2005) Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and bioconductor, R.C. Gentleman, V.J. Carey, S. Dudoit, R. Irizarry, W. Huber, eds. (New York, NY: Springer), pp. 397–420.

    Chapter  Google Scholar 

  14. Yang, Y.H., Dudoit, S., Luu, P., and Speed, T.P. (2001) Normalization of cDNA microarray data. In SPIE BiOS 2001. San Jose, CA.

    Google Scholar 

  15. Bishop, D.K., Park, D., Xu, L., and Kleckner, N. (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456.

    Article  PubMed  CAS  Google Scholar 

  16. Yabuki, N., Terashima, H., and Kitada, K. (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would also like to thank Gerben Vader and Milan de Vries for technical discussions and critical reading of this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hochwagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Blitzblau, H.G., Hochwagen, A. (2011). Genome-Wide Detection of Meiotic DNA Double-Strand Break Hotspots Using Single-Stranded DNA. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics