Approaches to Study GPCR Regulation in Native Systems

  • Jonathon M. WilletsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 746)


The ability to assess whether individual proteins are involved in the signalling or regulation of G ­protein-coupled receptor signalling is highly dependent on the pharmacological tools available. In the absence of appropriate pharmacological agents, alternative molecular approaches have been developed to alter either protein function or expression. This has included the use of mutants, for example catalytically inactive (kinase-dead) enzymes, which when overexpressed function as dominant negatives to inhibit endogenous enzyme function, and more latterly small (21–23 bp) interfering RNA dsRNA oligos, whose antisense strand is designed complementary to the target protein mRNA and which can be used to deplete target protein expression. Critically, the success of these approaches depends on the transfection efficiency, and the chosen experimental assay in the cell type studied. Therefore, three transfection techniques and their merits and drawbacks are described. In addition, one method of examining G protein-coupled receptor (GPCR) regulation, combining siRNA-mediated GRK depletion and imaging of fluorescent GPCR ­signalling reporter biosensors in difficult-to-transfect cells is briefly described.

Key words

GPCR GRK siRNA Receptor regulation Dominant negative Cell transfection 


  1. 1.
    Fredriksson R., Lagerstrom, M.C., Lundin, L.G. and Schioth, H.B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, ­paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.PubMedCrossRefGoogle Scholar
  2. 2.
    Pierce, K.L., Premont, R.T. and Lefkowitz, R.J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson, S., Bergsma, D.J., Chambers, J.K., Muir, A.I., Fantom, K.G., Ellis, C., Murdock, P.R., Herrity, N.C. and Stadel, J.M. (1998) Orphan G-protein-coupled receptors: the next generation of drug targets? Br. J. Pharmacol. 125, 1387–1392.PubMedCrossRefGoogle Scholar
  4. 4.
    Willets, J.M., Challiss, R.A. and Nahorski, S.R. (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol. Sci. 24, 626–633.PubMedCrossRefGoogle Scholar
  5. 5.
    Kong, G., Penn, R. and Benovic, J.L. (1994) A β-adrenergic receptor kinase dominant ­negative mutant attenuates desensitization of the β2-adrenergic receptor. J. Biol. Chem. 269, 13084–13087.PubMedGoogle Scholar
  6. 6.
    Simon, V., Robin, M.T., Legrand, C. and Cohen-Tannoudji, J. (2003) Endogenous G protein-coupled receptor kinase 6 triggers homologous beta-adrenergic receptor desensitization in primary uterine smooth muscle cells. Endocrinology 144, 3058–3066.PubMedCrossRefGoogle Scholar
  7. 7.
    Debburman, S.K., Kunapuli, P., Benovic, J.L. and Hosey, M.M. (1995) Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases. Mol. Pharmacol. 47, 224–233.PubMedGoogle Scholar
  8. 8.
    Willets, J.M., Challiss, R.A. and Nahorski, S.R. (2002) Endogenous G protein-coupled receptor kinase 6 Regulates M3 muscarinic acetylcholine receptor phosphorylation and desensitization in human SH-SY5Y neuroblastoma cells. J. Biol. Chem. 277, 15523–15529.PubMedCrossRefGoogle Scholar
  9. 9.
    Willets, J.M., Challiss, R.A., Kelly, E. and Nahorski, S.R. (2001) G protein-coupled receptor kinases 3 and 6 use different pathways to desensitize the endogenous M3 muscarinic acetylcholine receptor in human SH-SY5Y cells. Mol. Pharmacol. 60, 321–330.PubMedGoogle Scholar
  10. 10.
    Diviani, D., Lattion, A.L., Larbi, N., Kunapuli, P., Pronin, A., Benovic, J.L. and Cotecchia, S. (1996) Effect of different G protein-coupled receptor kinases on phosphorylation and desensitization of the α1B-adrenergic receptor. J. Biol. Chem. 271, 5049–5058.PubMedCrossRefGoogle Scholar
  11. 11.
    Oppermann, M., Freedman, N.J., Alexander, R.W. and Lefkowitz, R.J. (1996) Phos­phorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J. Biol. Chem. 271, 13266–13272.PubMedCrossRefGoogle Scholar
  12. 12.
    Schafer, B., Marg, B., Gschwind, A. and Ullrich, A. (2004) Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J. Biol. Chem. 279, 47929–47938.PubMedCrossRefGoogle Scholar
  13. 13.
    Willets, J.M., Taylor, A.H., Shaw, H., Konje, J.C. and Challiss, R.A. (2008) Selective regulation of H1 histamine receptor signalling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol. Endocrinol. 22, 1893–1907.PubMedCrossRefGoogle Scholar
  14. 14.
    Morris, G.E., Nelson, C.P., Standen, N.B., Challiss, R.A. and Willets, J.M. (2010) Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovasc. Res. 85, 424–433.PubMedCrossRefGoogle Scholar
  15. 15.
    Willets, J.M., Brighton, P.J., Mistry, R., Morris, G.E., Konje, J.C. and Challiss, R.A. (2009) Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol. Endocrinol. 23, 1272–1280.PubMedCrossRefGoogle Scholar
  16. 16.
    Labasque, M., Reiter, E., Becamel, C., Bockaert, J. and Marin, P. (2008) Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signalling. Mol. Biol. Cell 19, 4640–4650.PubMedCrossRefGoogle Scholar
  17. 17.
    Hirotani, S., Otsu, K., Nishida, K., Higuchi, Y., Morita, T., Nakayama, H., Yamaguchi, O., Mano, T., Matsumura, Y., Ueno, H., Tada, M. and Hori, M. (2002) Involvement of nuclear factor-κB and apoptosis signal-­regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105, 509–515.PubMedCrossRefGoogle Scholar
  18. 18.
    Penela, P., Murga, C., Ribas, C., Tutor, A.S., Peregrin, S. and Mayor, F., Jr. (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular ­disease. Cardiovasc. Res. 69, 46–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Gesty-Palmer, D. and Luttrell, L.M. (2008) Heptahelical terpsichory. Who calls the tune? J. Recept. Signal Transduct. Res. 28, 39–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Martini, J.S., Raake, P., Vinge, L.E., DeGeorge, B.R., Jr., Chuprun, J.K., Harris, D.M., Gao, E., Eckhart, A.D., Pitcher, J.A. and Koch, W.J. (2008) Uncovering G ­protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U S A 105, 12457–12462.PubMedCrossRefGoogle Scholar
  21. 21.
    Rao, M. and Sockanathan, S. (2005) Molecular mechanisms of RNAi: implications for development and disease. Birth Defects Res. C. Embryo Today 75, 28–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Willets, J.M., Nash, M.S., Challiss, R.A. and Nahorski, S.R. (2004) Imaging of muscarinic acetylcholine receptor signaling in hippocampal neurons: evidence for phosphorylation-dependent and -independent regulation by G-protein-coupled receptor kinases. J. Neurosci. 24, 4157–4162.PubMedCrossRefGoogle Scholar
  23. 23.
    Carman, C.V., Parent, J.L., Day, P.W., Pronin, A.N., Sternweis, P.M., Wedegaertner, P.B., Gilman, A.G., Benovic, J.L. and Kozasa, T. (1999) Selective regulation of Gαq/11 by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274, 34483–34492.PubMedCrossRefGoogle Scholar
  24. 24.
    Sterne-Marr, R., Tesmer, J.J., Day, P.W., Stracquatanio, R.P., Cilente, J.A., O’Connor, K.E., Pronin, A.N., Benovic, J.L. and Wedegaertner, P.B. (2003) G protein-coupled receptor kinase 2/Gαq/11 interaction. A novel surface on a regulator of G protein signaling homology domain for binding G alpha ­subunits. J. Biol. Chem. 278, 6050–6058.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, X., Dong, L., Xie, J., Tong, T. and Zhan, Q. (2009) Stable knockdown of Aurora-A by vector-based RNA interference in human oesophageal squamous cell carcinoma cell line inhibits tumor cell proliferation, invasion and enhances apoptosis. Cancer Biol. Ther. 8, 1852–1859.PubMedCrossRefGoogle Scholar
  26. 26.
    Willets, J.M., Mistry, R., Nahorski, S.R. and Challiss, R.A. (2003) Specificity of G protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell M3 muscarinic acetylcholine receptor signalling. Mol. Pharmacol. 64, 1059–1068.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim, J., Ahn, S., Ren, X.R., Whalen, E.J., Reiter, E., Wei, H. and Lefkowitz, R.J. (2005) Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signalling. Proc. Natl. Acad. Sci. U S A 102, 1442–1447.PubMedCrossRefGoogle Scholar
  28. 28.
    Ren, X.R., Reiter, E., Ahn, S., Kim, J., Chen, W. and Lefkowitz, R.J. (2005) Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl. Acad. Sci. U S A, 102, 1448–1453.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cancer Studies and Molecular MedicineUniversity of LeicesterLeicesterUK

Personalised recommendations