Advertisement

Tandem Affinity Purification and Identification of GPCR-Associated Protein Complexes

  • Avais M. Daulat
  • Pascal Maurice
  • Ralf JockersEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 746)

Abstract

The first tandem affinity purification (TAP) protocol was described in 1999. Originally designed for the purification of protein complexes in yeast RNA splicing, its application rapidly expanded towards whole proteome analysis in yeast and mammalian cells. More recently, TAP has been applied to the purification of G protein-coupled receptor (GPCR)-associated protein complexes (GAPCs). This approach is particularly attractive for GPCRs, as the native, seven transmembrane structure is used as bait to purify GAPCs from mammalian cells expressing receptors at physiological levels. Here, a detailed protocol of the TAP method applied to GPCRs is presented.

Key words

G protein-coupled receptor Tandem affinity purification Protein complexes Proteomics 

Notes

Acknowledgments

We thank Dr. Luc Camoin for help in establishing proteomics procedures in our laboratory and Patty Chen for help in preparing the manuscript. AMD held an EGID fellowship.

References

  1. 1.
    Rosenbaum, D. M., Rasmussen, S. G., and Kobilka, B. K. (2009) The structure and function of G-protein-coupled receptors. Nature 459, 356–363PubMedCrossRefGoogle Scholar
  2. 2.
    Nakatani, Y., and Ogryzko, V. (2003) Immunoaffinity purification of mammalian protein complexes. Methods Enzymol 370, 430–444PubMedCrossRefGoogle Scholar
  3. 3.
    Angers, S., Thorpe, C. J., Biechele, T. L., Goldenberg, S. J., Zheng, N., MacCoss, M. J., and Moon, R. T. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348–357PubMedCrossRefGoogle Scholar
  4. 4.
    Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P. O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A. M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Gavin, A. C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B., and Superti-Furga, G. (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6, 97–105PubMedCrossRefGoogle Scholar
  5. 5.
    Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147PubMedCrossRefGoogle Scholar
  6. 6.
    Daulat, A. M., Maurice, P., Froment, C., Guillaume, J. L., Broussard, C., Monsarrat, B., Delagrange, P., and Jockers, R. (2007) Purification and identification of G protein-­coupled receptor protein complexes under native conditions. Mol Cell Proteomics 6, 835–844PubMedCrossRefGoogle Scholar
  7. 7.
    Lyssand, J. S., DeFino, M. C., Tang, X. B., Hertz, A. L., Feller, D. B., Wacker, J. L., Adams, M. E., and Hague, C. (2008) Blood pressure is regulated by an alpha1D-adrenergic receptor/dystrophin signalosome. J Biol Chem 283, 18792–18800PubMedCrossRefGoogle Scholar
  8. 8.
    Wacker, J. L., Feller, D. B., Tang, X. B., Defino, M. C., Namkung, Y., Lyssand, J. S., Mhyre, A. J., Tan, X., Jensen, J. B., and Hague, C. (2008) Disease-causing mutation in GPR54 reveals the importance of the second intracellular loop for class A G-protein-coupled receptor function. J Biol Chem 283, 31068–31078PubMedCrossRefGoogle Scholar
  9. 9.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein ­complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032PubMedCrossRefGoogle Scholar
  10. 10.
    Rabilloud, T. (1999) Silver staining of 2-D electrophoresis gels. Methods Mol Biol 112, 297–305PubMedGoogle Scholar
  11. 11.
    Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. Nat Methods 6, 359–362PubMedCrossRefGoogle Scholar
  12. 12.
    Daulat, A. M., Maurice, P., and Jockers, R. (2009) Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol Sci 30, 72–78PubMedCrossRefGoogle Scholar
  13. 13.
    Maurice, P., Daulat, A. M., Broussard, C., Mozo, J., Clary, G., Hotellier, F., Chafey, P., Guillaume, J. L., Ferry, G., Boutin, J. A., Delagrange, P., Camoin, L., and Jockers, R. (2008) A generic approach for the purification of signaling complexes that specifically interact with the carboxyl-terminal domain of G protein-coupled receptors. Mol Cell Proteomics 7, 1556–1569PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut CochinUniversité Paris Descartes, INSERMParisFrance

Personalised recommendations