Advertisement

Peptide Affinity Purification for the Isolation and Identification of GPCR-Associated Protein Complexes

  • Pascal Maurice
  • Avais M. Daulat
  • Ralf JockersEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 746)

Abstract

Protein networks and their dynamic regulation play a fundamental role in biological systems. Seven transmembrane-spanning G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors controlling the flow of information from the extracellular environment into cells by inducing intracellular signaling pathways. Several GPCR-associated protein complexes (GAPCs), particularly those binding to the intracellular carboxyl-terminus (C-terminus), have been identified over the last 20 years. Recent optimizations in purification protocols and advances in mass spectrometry-based protein identification techniques have considerably accelerated the identification of GAPCs. We will concentrate here on a description of the latest version of the peptide affinity purification approach dedicated to the purification of GAPCs interacting with GPCR C-termini or any other soluble receptor subdomain.

Key words

G protein-coupled receptor (GPCR) Immobilized metal affinity chromatography (IMAC) Protein complexes Proteomics 

Notes

Acknowledgements

We thank Patty Chen (Institut Cochin, Paris) for comments on the manuscript.

References

  1. 1.
    Lagerström, M. C., and Schiöth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug. Discov. 7, 339–357.PubMedCrossRefGoogle Scholar
  2. 2.
    Maurice, P., Daulat, A. M., Broussard, C., Mozo, J., Clary, G., Hotellier, F., Chafey, P., Guillaume, J. L., Ferry, G., Boutin, J. A., Delagrange, P., Camoin, L., and Jockers, R. (2008) A generic approach for the purification of signaling complexes that specifically interact with the carboxyterminal domain of G ­protein-coupled receptors. Mol. Cell. Proteomics 7, 1556–1569.PubMedCrossRefGoogle Scholar
  3. 3.
    Daulat, A. M., Maurice, P., Froment, C., Guillaume, J. L., Broussard, C., Monsarrat, B., Delagrange, P., and Jockers, R. (2007) Purification and identification of G protein-coupled receptor protein complexes under native conditions. Mol. Cell. Proteomics 6, 835–844.Google Scholar
  4. 4.
    Becamel, C., Alonso, G., Galeotti, N., Demey, E., Jouin, P., Ullmer, C., Dumuis, A., Bockaert, J., and Marin, P. (2002) Synaptic multiprotein complexes associated with 5-HT2C receptors: a proteomic approach. EMBO J. 21, 2332–2342.Google Scholar
  5. 5.
    Becamel, C., Gavarini, S., Chanrion, B., Alonso, G., Galeotti, N., Dumuis, A., Bockaert, J., and Marin, P. (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J. Biol. Chem. 279, 20257–20266.Google Scholar
  6. 6.
    Joubert, L., Hanson, B., Barthet, G., Sebben, M., Claeysen, S., Hong, W., Marin, P., Dumuis, A., and Bockaert, J. (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J. Cell Sci. 117, 5367–5379.Google Scholar
  7. 7.
    Enz, R. (2007) The trick of the tail: protein-protein interactions of metabotropic glutamate receptors. Bioessays 29, 60–73.Google Scholar
  8. 8.
    Daulat, A. M., Maurice, P., and Jockers, R. (2009) Recent methodological advances in the discovery of GPCR-associated protein complexes (GAPCs). Trends Pharmacol. Sci. 30, 72–78. Google Scholar
  9. 9.
    Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. Nat Methods 6, 359–62.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut CochinUniversité Paris Descartes, INSERMParisFrance

Personalised recommendations