Advertisement

Using Calcium Imaging as a Readout of GPCR Activation

  • Martin D. BootmanEmail author
  • H. Llewelyn Roderick
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 746)

Abstract

Monitoring cellular calcium concentration using fluorescent reporters can provide a rapid, proportional assay of G-protein-coupled receptor activation. Recording calcium changes in single cells, or cell populations, is relatively straightforward, but requires careful deliberation regarding the appropriate calcium reporter and experimental approach. Here, we describe strategies to ensure that calcium changes are recorded with good fidelity and minimal invasiveness. We highlight a range of issues that need to be considered within the design of an experiment to measure cellular calcium, and suggest strategies to avoid common pit-falls.

Key words

Calcium Fluorescence Pluronic GPCR Imaging Wide-field Confocal Photobleaching Contrast Brightness Wavelength 

References

  1. 1.
    Berridge, M.J., Lipp, P., and Bootman, M.D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.PubMedCrossRefGoogle Scholar
  3. 3.
    Bootman, M.D., Berridge, M.J., and Roderick, H.L. (2002) Calcium signalling: more messengers, more channels, more complexity. Curr. Biol. 12, R563–565.PubMedCrossRefGoogle Scholar
  4. 4.
    Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U.S.A. 98, 3197–3202.PubMedCrossRefGoogle Scholar
  5. 5.
    Truong, K., Sawano, A., Miyawaki, A., and Ikura, M. (2007) Calcium indicators based on calmodulin-fluorescent protein fusions. Methods Mol. Biol. 352, 71–82.PubMedGoogle Scholar
  6. 6.
    Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A. (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 10554–10559.PubMedCrossRefGoogle Scholar
  7. 7.
    Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., and Tsien, R.Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194.CrossRefGoogle Scholar
  8. 8.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.PubMedGoogle Scholar
  9. 9.
    Minta, A., Kao, J.P., and Tsien, R.Y. (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178.PubMedGoogle Scholar
  10. 10.
    Tsien, R.Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.PubMedCrossRefGoogle Scholar
  11. 11.
    Bootman, M.D., Cheek, T.R., Moreton, R.B., Bennett, D.L., and Berridge, M.J. (1994) Smoothly graded Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. J. Biol. Chem. 269, 24783–24791.PubMedGoogle Scholar
  12. 12.
    Bootman, M.D., Lipp, P., and Berridge, M.J. (2001) The organisation and functions of local Ca2+ signals. J. Cell Sci. 114, 2213–2222.PubMedGoogle Scholar
  13. 13.
    Zeller, S., Rudiger, S., Engel, H., Sneyd, J., Warnecke, G., Parker, I., and Falcke, M. (2009) Modeling of the modulation by buffers of Ca2+ release through clusters of IP3 receptors. Biophys. J. 97, 992–1002.PubMedCrossRefGoogle Scholar
  14. 14.
    Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., and Roderick, H.L. (2009) An update on nuclear calcium signalling. J. Cell Sci. 122, 2337–2350.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun, X.P., Callamaras, N., Marchant, J.S., and Parker, I. (1998) A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J. Physiol. 509, 67–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas, D., Lipp, P., Tovey, S.C., Berridge, M.J., Li, W., Tsien, R.Y., and Bootman, M.D. (2000) Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr. Biol. 10, 8–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith, I.F., Wiltgen, S.M., and Parker, I. (2009) Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing mem­brane-permeant caged IP3. Cell Calcium 45, 65–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas, D., Tovey, S.C., Collins, T.J., Bootman, M.D., Berridge, M.J., and Lipp, P. (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28, 213–223.PubMedCrossRefGoogle Scholar
  19. 19.
    Uto, A., Arai, H., and Ogawa, Y. (1991) Reassessment of Fura-2 and the ratio method for determination of intracellular Ca2+ concentrations. Cell Calcium 12, 29–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Proven, A., Roderick, H.L., Conway, S.J., Berridge, M.J., Horton, J.K., Capper, S.J., and Bootman, M.D. (2006) Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J. Cell Sci. 119, 3363–3375.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimozono, S., Fukano, T., Nagai, T., Kirino, Y., Mizuno, H., and Miyawaki, A. (2002) Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein. Sci. STKE 2002, pl4.Google Scholar
  22. 22.
    Kurebayashi, N., Harkins, A.B., and Baylor, S.M. (1993) Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys. J. 64, 1934–1960.PubMedCrossRefGoogle Scholar
  23. 23.
    Lohr, C. (2003) Monitoring neuronal calcium signalling using a new method for ratiometric confocal calcium imaging. Cell Calcium 34, 295–303.PubMedCrossRefGoogle Scholar
  24. 24.
    Lipp, P. and Niggli, E. (1993) Ratiometric confocal Ca2+-measurements with visible ­wavelength indicators in isolated cardiac ­myocytes. Cell Calcium 14, 359–372.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsien, R.Y. (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528.PubMedCrossRefGoogle Scholar
  26. 26.
    Vorndran, C., Minta, A., and Poenie, M. (1995) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys. J. 69, 2112–2124.PubMedCrossRefGoogle Scholar
  27. 27.
    Bootman, M.D., Taylor, C.W., and Berridge, M.J. (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 267, 25113–25119.PubMedGoogle Scholar
  28. 28.
    Szado, T., Vanderheyden, V., Parys, J.B., De Smedt, H., Rietdorf, K., Kotelevets, L., Chastre, E., Khan, F., Landegren, U., Soderberg, O., Bootman, M.D., and Roderick, H.L. (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 105, 2427–2432.PubMedCrossRefGoogle Scholar
  29. 29.
    Scheenen, W.J., Makings, L.R., Gross, L.R., Pozzan, T., and Tsien, R.Y. (1996) Photo­degradation of indo-1 and its effect on apparent Ca2+ concentrations. Chem. Biol. 3, 765–774.PubMedCrossRefGoogle Scholar
  30. 30.
    Hong, X., Jiang, F., Kalkanis, S.N., Zhang, Z.G., Zhang, X., Zheng, X., Jiang, H., and Chopp, M. (2009) Intracellular free calcium mediates glioma cell detachment and cytotoxicity after photodynamic therapy. Lasers Med. Sci. 24, 777–786.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular SignallingBabraham InstituteCambridgeUK

Personalised recommendations