[35S]GTPγS Binding as an Index of Total G-Protein and Gα-Subtype-Specific Activation by GPCRs

  • Rajendra Mistry
  • Mark R. Dowling
  • R. A. John ChallissEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 746)


On activation, G-protein-coupled receptors (GPCRs) exert many of their cellular actions through ­promoting guanine nucleotide exchange on Gα subunits of heterotrimeric G proteins to release Gα-GTP and free βγ-subunits. In membrane preparations, GTP can be substituted by 35S-labeled guanosine­ 5′-O-(3-thio)triphosphate ([35S]GTPγS) and on agonist stimulation a quasi-stable [35S]GTPγS–Gα ­complex forms and accumulates. Separation of [35S]GTPγS–Gα complexes from free [35S]GTPγS allows differences between basal and agonist-stimulated rates of [35S]GTPγS–Gα complex formation­ to be used to obtain pharmacological information on receptor–G-protein information transfer. Further, by releasing Gα-subunits into solution following the [35S]GTPγS binding step, Gα-subunit-specific antibodies can be used to investigate the Gα-protein subpopulations activated by receptors by immunoprecipitation of [35S]GTPγS–Gα complexes and quantification by scintillation counting. Here, we describe a total [35S]GTPγS binding assay and a modification of this method that incorporates a Gα-specific immunoprecipitation step.

Key words

[35S]GTPγS Guanine nucleotide binding protein G-protein-coupled receptor GDP Receptor–G-protein coupling Gα-protein-specific immunoprecipitation 


  1. 1.
    Northup, J.K., Smigel, M.D., and Gilman, A.G. (1982) The guanine nucleotide-activating site of the regulatory component of adenylate cyclase. J. Biol. Chem. 257, 11416–11423.PubMedGoogle Scholar
  2. 2.
    Kurose, H., Katada, T., Haga, T., Haga, K., Ichiyama, A., and Ui, M. (1986) Functional interaction of purified muscarinic receptors with purified inhibitory guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J. Biol. Chem. 261, 6423–6428.PubMedGoogle Scholar
  3. 3.
    Hilf, G., Gierschik, P., and Jakobs, K.H. (1989) Muscarinic acetylcholine receptor-stimulated binding of guanosine 5′-O-(3-thiophosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur. J. Biochem. 186, 725–731.PubMedCrossRefGoogle Scholar
  4. 4.
    Lorenzen, A., Fuss, M., Vogt, H., and Schwabe, U. (1993) Measurement of guanine nucleotide-binding protein activation by A1 adenosine receptor agonists in bovine brain membranes: stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding. Mol. Pharmacol. 44, 115–123.PubMedGoogle Scholar
  5. 5.
    Sim, L.J., Selley, D.E., and Childers, S.R. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. USA 92, 7242–7246.PubMedCrossRefGoogle Scholar
  6. 6.
    Milligan, G. (2003) Principles: Extending the utility of [35S]-GTPγS binding assays. Trends Pharmacol. Sci. 24, 87–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Friedman, E., Butkerait, P., and Wang, H.Y. (1993) Analysis of receptor-stimulated and basal guanine nucleotide binding to membrane G proteins by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Anal. Biochem. 241, 171–178.CrossRefGoogle Scholar
  8. 8.
    Burford, N.T., Tolbert, L.M., and Sadee, W. (1998) Specific G protein activation and μ-opioid receptor internalization caused by morphine, DAMGO and endomorphin I. Eur. J. Pharmacol. 342, 123–126.PubMedCrossRefGoogle Scholar
  9. 9.
    Akam, E.C., Challiss, R.A.J., and Nahorski, S.R. (2001) Gq/11 and Gi/o activation in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. Br. J. Pharmacol. 132, 950–958.PubMedCrossRefGoogle Scholar
  10. 10.
    Carruthers, A.M., Warner, A.J., Michel, A.D., Feniuk, W., and Humphrey, P.A. (1999) Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Gsα proteins. Br. J. Pharmacol. 126, 1221–1229.PubMedCrossRefGoogle Scholar
  11. 11.
    Young, K.W., Bootman, M.D., Channing, D.R., Lipp, P., Maycox, P.R., Meakin, J., Challiss, R.A.J., and Nahorski, S.R. (2000) Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production: potential involvement of endogenous Edg-4 receptors. J. Biol. Chem. 275, 38532–38539.PubMedCrossRefGoogle Scholar
  12. 12.
    DeLapp, N.W., McKinzie, J.H., Sawyer, B.D., Vandergriff, A., Falcone, J., McClure, D., and Felder, C.C. (1999) Determination of [35S]guanosine-5′-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J. Pharmacol. Exp. Ther. 289, 946–955.PubMedGoogle Scholar
  13. 13.
    Salah-Uddin, H., Thomas, D.R., Davies, C.H., Hagan, J.J., Wood, M.D., Watson, J.M., and Challiss, R.A.J. (2008) Pharmacological assessment of M1 muscarinic acetylcholine receptor-Gq/11 protein coupling in membranes prepared from postmortem human brain tissue. J. Pharmacol. Exp. Ther. 325, 869–874.PubMedCrossRefGoogle Scholar
  14. 14.
    Burford, N.T., Tobin, A.B., and Nahorski, S.R (1995) Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis-toxin sensitive/insensitive guanine nucleotide-binding proteins. Eur. J. Pharmacol. 289, 343351PubMedCrossRefGoogle Scholar
  15. 15.
    Berg, K.A., Maayani, S., Goldfarb, J., Scaramellini, C., Leff, P., and Clarke, W.P. (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2 C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol. 54, 94104PubMedGoogle Scholar
  16. 16.
    Kenakin, T. (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci. 16, 199–205Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rajendra Mistry
  • Mark R. Dowling
  • R. A. John Challiss
    • 1
    Email author
  1. 1.Department of Cell Physiology and PharmacologyUniversity of LeicesterLeicesterUK

Personalised recommendations