Ubiquitination of GPCRs

  • Adriana Caballero
  • Adriano MarcheseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 746)


In this chapter, we describe a method for detecting the ubiquitination status of G protein-coupled receptors (GPCRs). This involves co-expression of a GPCR with an epitope-tagged ubiquitin construct in a ­heterologous mammalian expression system. Stimulus-dependent modification of the GPCR by ­ubiquitin is detected by immunoprecipitation and subsequent immunoblotting to detect incorporation of the epitope-tagged ubiquitin. We describe here a well-established protocol to detect ubiquitination of the chemokine receptor CXCR4, which can be easily applied to detect the ubiquitination status of other GPCRs.

Key words

Ubiquitin G protein-coupled receptor Agonist Immunoblot Lysosome Sorting Degradation CXCR4 Immunoprecipitation De-ubiquitination 



Work was supported by NIH grants GM075159 and DA026040 to A.M.


  1. 1.
    Marchese, A. Paing, M. M. Temple, B. R. and Trejo, J. (2008) G protein-coupled receptor sorting to endosomes and lysosomes Annu. Rev. Pharmacol. Toxicol. 48, 601–629.CrossRefGoogle Scholar
  2. 2.
    Hanyaloglu, A. C. and von Zastrow, M. (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhandari, D. Robia, S. L. and Marchese, A. (2009) The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Mol. Biol. Cell. 20, 1324–1339.PubMedCrossRefGoogle Scholar
  4. 4.
    Marchese, A. Raiborg, C. Santini, F. Keen, J. H. Stenmark, H. and Benovic, J. L. (2003) The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev. Cell 5, 709–722.PubMedCrossRefGoogle Scholar
  5. 5.
    Marchese, A. and Benovic, J. L. (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting J. Biol. Chem. 276, 45509–45512.CrossRefGoogle Scholar
  6. 6.
    Jacob, C. Cottrell, G. S. Gehringer, D. Schmidlin, F. Grady, E. F. and Bunnett, N. W. (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J. Biol. Chem. 280, 16076–16087.PubMedCrossRefGoogle Scholar
  7. 7.
    Shenoy, S. K. Xiao, K. Venkataramanan, V. Snyder, P. M. Freedman, N. J. and Weissman, A. M. (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the β2-adrenergic receptor. J. Biol. Chem. 283, 22166–22176.PubMedCrossRefGoogle Scholar
  8. 8.
    Tanowitz, M. and Von Zastrow, M. (2002) Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J. Biol. Chem. 277, 50219–50222.PubMedCrossRefGoogle Scholar
  9. 9.
    Baugher, P. J. and Richmond, A. (2008) The carboxyl-terminal PDZ ligand motif of chemokine receptor CXCR2 modulates post-endocytic sorting and cellular chemotaxis. J. Biol. Chem. 283, 30868–30878.PubMedCrossRefGoogle Scholar
  10. 10.
    Meiser, A. Mueller, A. Wise, E. L. McDonagh, E. M. Petit, S. J. Saran, N. Clark, P. C. Williams, T. J. and Pease, J. E. (2008) The chemokine receptor CXCR3 is degraded following internalization and is replenished at the cell surface by de novo synthesis of receptor. J. Immunol. 180, 6713–6724.PubMedGoogle Scholar
  11. 11.
    Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178.PubMedCrossRefGoogle Scholar
  12. 12.
    Ikeda, F. and Dikic, I. (2008) Atypical ubiquitin chains: new molecular signals. EMBO Rep. 9, 536–542.PubMedCrossRefGoogle Scholar
  13. 13.
    Bonifacino, J. S. and Weissman, A. M. (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell. Dev. Biol. 14, 19–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Hicke, L. (2001) Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol. 2, 195–201.PubMedCrossRefGoogle Scholar
  15. 15.
    Raiborg, C. and Stenmark, H. (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452.PubMedCrossRefGoogle Scholar
  16. 16.
    Clague, M. J. and Urbe, S. (2008) Multivesicular bodies. Curr. Biol. 18, R402–R404.PubMedCrossRefGoogle Scholar
  17. 17.
    Mundell, S. J. Orsini, M. J. and Benovic, J. L. (2002) Characterization of arrestin expression and function. Methods Enzymol. 343, 600–601.PubMedCrossRefGoogle Scholar
  18. 18.
    Ellison, M. J. and Hochstrasser, M. (1991) Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. J. Biol. Chem. 266, 21150–21157.Google Scholar
  19. 19.
    Courbard, J. R. Fiore, F. Adelaide, J. Borg, J. P. Birnbaum, D. and Ollendorff, V. (2002) Interaction between two ubiquitin-protein ­isopeptide ligases of different classes, CBLC and AIP4/ITCH. J. Biol. Chem. 277, 45267–45275.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, H. Matsuzawa, A. Brown, S. A. Zhou, J. Guy, C. S. Tseng, P. H. Forbes, K. Nicholson, T. P. Sheppard, P. W. Hacker, H. Karin, M. and Vignali, D. A. (2008) Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc. Natl. Acad. Sci. USA 105, 20197–20202.PubMedCrossRefGoogle Scholar
  21. 21.
    Fujimuro, M. Sawada, H. and Yokosawa, H. (1994) Production and characterization of monoclonal antibodies specific to multi-­ubiquitin chains of polyubiquitinated proteins. FEBS Lett. 349, 173–180.PubMedCrossRefGoogle Scholar
  22. 22.
    Shenoy, S. K. McDonald, P. H. Kohout, T. A. and Lefkowitz, R. J. (2001) Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilkinson, K. D. (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148.PubMedCrossRefGoogle Scholar
  24. 24.
    Hicke, L. Zanolari, B. and Riezman, H. (1998) Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J. Cell Biol. 141, 349–358.PubMedCrossRefGoogle Scholar
  25. 25.
    Amerik, A. Y. Nowak, J. Swaminathan, S. and Hochstrasser, M. (2000) The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell. 11, 3365–3380.PubMedGoogle Scholar
  26. 26.
    Wolfe, B. L. Marchese, A. and Trejo, J. (2007) Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J. Cell Biol. 177, 905–916.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Pharmacology and Therapeutics, Stritch School of MedicineLoyola University ChicagoMaywoodUSA

Personalised recommendations