Skip to main content

Using Nuclear Run-On Transcription Assays in RNAi Studies

  • Protocol
  • First Online:
Book cover RNAi and Plant Gene Function Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 744))

Abstract

RNA interference (RNAi) is a mechanism regulating gene transcript levels either by transcriptional gene silencing or by posttranscriptional gene silencing, which act in the genome maintenance and the regulation of gene expression which is typically inferred from measuring transcript abundance. Nuclear “run-on” (or “run-off”) transcription assays have been used to obtain quantitative information about the relative rates of transcription of different genes in nuclei isolated from a particular tissue or organ. Basically, these assays exploit the activity of RNA polymerases to synthesize radiolabeled transcripts that then can be hybridized to filter-bound, cold, excess single-stranded DNA probes representing genes of interest. The protocol presented here streamlines, adapts, and optimizes nuclear run-on transcription assays for use in RNAi studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Tomari, Y., and Zamore, P. D. (2005) Perspective: Machines for RNAi. Genes Dev. 19, 517–529.

    Article  PubMed  CAS  Google Scholar 

  3. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  4. Meister, G., and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.

    Article  PubMed  CAS  Google Scholar 

  5. Myers, J. W., Jones, J. T., Meyer, T., and Ferrell, J. E., Jr. (2003) Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol. 21, 324–328.

    Article  PubMed  CAS  Google Scholar 

  6. Chapman, E. J., and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896.

    Article  PubMed  CAS  Google Scholar 

  7. Axtell, M. J., and Bowman, J. L. (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci. 13, 343–349.

    Article  PubMed  CAS  Google Scholar 

  8. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiol. 148, 684–693.

    Article  PubMed  CAS  Google Scholar 

  9. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D. P. (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425.

    Article  PubMed  CAS  Google Scholar 

  10. Khraiwesh, B., Arif, M. A., Seumel, G. I., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2010) Transcriptional control of gene expression by microRNAs. Cell 140, 111–122.

    Article  PubMed  CAS  Google Scholar 

  11. Darnell, J. E., Jr. (1982) Variety in the level of gene control in eukaryotic cells. Nature 297, 365–371.

    Article  PubMed  CAS  Google Scholar 

  12. Alwine, J. C., Kemp, D. J., and Stark, G. R. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74, 5350–5354.

    Article  PubMed  CAS  Google Scholar 

  13. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993) Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11, 1026–1030.

    Article  CAS  Google Scholar 

  14. Galbraith, D. W. (2006) DNA microarray analyses in higher plants. OMICS 10, 455–473.

    Article  PubMed  CAS  Google Scholar 

  15. Gutierrez, R. A., Ewing, R. M., Cherry, J. M., and Green, P. J. (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc. Natl. Acad. Sci. USA 99, 11513–11518.

    Article  PubMed  CAS  Google Scholar 

  16. Greenberg, M. E., and Bender, T. P. (2007) Identification of newly transcribed RNA. Curr. Protoc. Mol. Biol. 4, 10.1–10.7.

    Google Scholar 

  17. Chan, M. T., and Yu, S. M. (1998) The 3 untranslated region of a rice α-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15, 685–695.

    Article  PubMed  CAS  Google Scholar 

  18. Dean, C., Favreau, M., Bond-Nutter, D., Bedbrook, J., and Dunsmuir, P. (1989) Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1, 201–208.

    Article  PubMed  CAS  Google Scholar 

  19. Folta, K. M., and Kaufman, L. S. (2006) Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat. Protoc. 1, 3094–3100.

    Article  PubMed  CAS  Google Scholar 

  20. Giuliano, G., and Scolnik, P. A. (1988) Transcription of two photosynthesis-associated nuclear gene families correlates with the presence of chloroplasts in leaves of the variegated tomato ghost mutant. Plant Physiol. 86, 7–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lescure, A. M., Proudhon, D., Pesey, H., Ragland, M., Theil, E. C., and Briat, J. F. (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc. Natl. Acad. Sci. USA 88, 8222–8226.

    Article  PubMed  CAS  Google Scholar 

  22. Marrs, K. A., and Kaufman, L. S. (1989) Blue-light regulation of transcription for nuclear genes in pea. Proc. Natl. Acad. Sci. USA 86, 4492–4495.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez, S., Pisano, D. G., and Serrano, M. (2008) Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7, 2601–2608.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, D. H., Saetrom, P., Snove, O., Jr., and Rossi, J. J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. USA 105, 16230–16235.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Enas Qudeimat and Dr. Mieke Van Lijsebettens for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel Khraiwesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Khraiwesh, B. (2011). Using Nuclear Run-On Transcription Assays in RNAi Studies. In: Kodama, H., Komamine, A. (eds) RNAi and Plant Gene Function Analysis. Methods in Molecular Biology, vol 744. Humana Press. https://doi.org/10.1007/978-1-61779-123-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-123-9_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-122-2

  • Online ISBN: 978-1-61779-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics