Nasal Potential Difference Measurements to Assess CFTR Ion Channel Activity

  • Steven M. RoweEmail author
  • John Paul Clancy
  • Michael Wilschanski
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


The Nasal potential difference measurement is used to measure the voltage across the nasal epithelium, which results from transepithelial ion transport and reflects in part CFTR function. The electrophysiologic abnormality in cystic fibrosis was first described 30 years ago and correlates with features of the CF phenotype. NPD measurement is an important in vivo research and diagnostic tool, and is used to assess the efficacy of new treatments such as gene therapy and ion transport modulators. This chapter will elaborate on the electrophysiological principles behind the test, the equipment required, the methods, and the analysis of the data.

Key words

Nasal potential difference CFTR, ENaC amiloride cAMP isoproterenol electrodes ion transport 



The authors are grateful to Michael Knowles for providing a critical review of the material presented and also to Peter Durie for helpful critiques in devising current methods proposed here. Support for this work was provided by the US National Institute of Health grants 1K23DK075788-01 and 1R03DK084110-01 (to S.M.R.), 1P30DK072482-01A1 (to Eric J. Sorscher for infrastructural support) and Cystic Fibrosis Foundation grants CLANCY05Y2 (S.M.R. and J.P.C.). This project was supported in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases; National Heart, Lung, and Blood Institute; or the National Institutes of Health.


  1. 1.
    Knowles, M., Gatzy, J., and Boucher, R. (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305, 1489–1495.PubMedCrossRefGoogle Scholar
  2. 2.
    Knowles, M. R., Paradiso, A. M., and Boucher, R. C. (1995) In vivo nasal potential difference: Techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 6, 445–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Middleton, P. G., Geddes, D. M., and Alton, E. W. (1994) Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur. Respir. J. 7, 2050–2056.PubMedCrossRefGoogle Scholar
  4. 4.
    Farrell, P. M., Rosenstein, B. J., White, T. B., Accurso, F. J., Castellani, C., Cutting, G. R. et al. (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic fibrosis foundation consensus report. J. Pediatr. 153, S4–S14.PubMedCrossRefGoogle Scholar
  5. 5.
    De Boeck, K., Wilschanski, M., Castellani, C., Taylor, C., Cuppens, H., Dodge, J. et al. (2006) Cystic fibrosis: Terminology and diagnostic algorithms. Thorax 61, 627–635.PubMedCrossRefGoogle Scholar
  6. 6.
    Knowles, M. R., Hohneker, K. W., Zhou, Z., Olsen, J. C., Noah, T. L., Hu, P. C. et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 333, 823–831.PubMedCrossRefGoogle Scholar
  7. 7.
    Noone, P. G., Hohneker, K. W., Zhou, Z., Johnson, L. G., Foy, C., Gipson, C. et al. (2000) Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol. Ther. 1, 105–114.PubMedCrossRefGoogle Scholar
  8. 8.
    Middleton, P. G., Caplen, N. J., Gao, X., Huang, L., Gaya, H., Geddes, D. M. et al. (1994) Nasal application of the cationic liposome DC-Chol: DOPE does not alter ion transport, lung function or bacterial growth. Eur. Respir. J. 7, 442–445.PubMedCrossRefGoogle Scholar
  9. 9.
    McCarty, N. A., Standaert, T. A., Teresi, M., Tuthill, C., Launspach, J., Kelley, T. J. et al. (2002) A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis. Pediatr. Pulmonol. 33, 90–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilschanski, M., Yahav, Y., Yaacov, Y., Blau, H., Bentur, L., Rivlin, J. et al. (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441.PubMedCrossRefGoogle Scholar
  11. 11.
    Kerem, E., Yaacov, Y., Armoni, S. et al. (2008) PTC124 induces time-dependent improvements in chloride conductance and clinical parameters in patients with nonsense-mutation-mediated cystic fibrosis. Pediatr. Pulmonol. Suppl. 31, 294.Google Scholar
  12. 12.
    Clancy, J. P., Rowe, S. M., Bebok, Z., Aitken, M. L., Gibson, R., Zeitlin, P. et al. (2007) No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am. J. Respir. Cell. Mol. Biol. 37, 57–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Accurso, F. J., Rowe, S. M., Clancy, J. P., Boyle, M. P., Dunitz, J. M., Durie, P. R., Sagel, S. D., Hornick, D. B., Konstan, M. W., Donaldson, S. H., Moss, R. B., Pilewski, J. M., Rubenstein, R. C., Uluer, A. Z., Aitken, M. L., Freedman, S. D., Rose, L. M., Mayer-Hamblett, N., Dong, Q., Zha, J., Stone, A.J., Olson, E. R., Ordonez, C. L., Campbell, P. W., Ashlock, M. A., and Ramsey, B. W. (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N. Engl. J. Med. 363, 1991–2003.Google Scholar
  14. 14.
    Konstan, M. W., Davis, P. B., Wagener, J. S., Hilliard, K. A., Stern, R. C., Milgram, L. J. et al. (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 15, 1255–1269.PubMedCrossRefGoogle Scholar
  15. 15.
    Zeitlin, P. L., Boyle, M. P., Guggino, W. B., and Molina, L. (2004) A phase I trial of intranasal Moli1901 for cystic fibrosis. Chest 125, 143–149.PubMedCrossRefGoogle Scholar
  16. 16.
    Rowe, S. M., Accurso, F., and Clancy, J. P. (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc. Am. Thorac. Soc. 4, 387–398.PubMedCrossRefGoogle Scholar
  17. 17.
    Rowe, S. M., Reeves, G., Young, H. et al. (2008) Correction of sodium transport with nasal administration of the prostasin inhibitor QAU145 in CF subjects. Pediatr. Pulmonol. Suppl. 31, A268.Google Scholar
  18. 18.
    Rowe, S. M., Miller, S., and Sorscher, E. J. (2005) Cystic fibrosis. N. Engl. J. Med. 352, 1992–2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Gatzy, J. T. (1967) Bioelectric properties of the isolated amphibian lung. Am. J. Physiol. 213, 425–431.PubMedGoogle Scholar
  20. 20.
    Knowles, M. R., Carson, J. L., Collier, A. M., Gatzy, J. T., and Boucher, R. C. (1981) Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am. Rev. Respir. Dis. 124, 484–490.PubMedGoogle Scholar
  21. 21.
    Knowles, M. R., Buntin, W. H., Bromberg, P. A., Gatzy, J. T., and Boucher, R. C. (1982) Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am. Rev. Respir. Dis. 126, 108–112.PubMedGoogle Scholar
  22. 22.
    Davies, J. C., Davies, M., McShane, D., Smith, S., Chadwick, S., Jaffe, A. et al. (2005) Potential difference measurements in the lower airway of children with and without cystic fibrosis. Am. J. Respir. Crit. Care Med. 171, 1015–1019.PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C. et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.PubMedCrossRefGoogle Scholar
  24. 24.
    Li, C., and Naren, A. P. (2005) Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther. 108, 208–223.PubMedCrossRefGoogle Scholar
  25. 25.
    Olivier, K. N., Bennett, W. D., Hohneker, K. W., Zeman, K. L., Edwards, L. J., Boucher, R. C. et al. (1996) Acute safety and effects on mucociliary clearance of aerosolized uridine 5-triphosphate ± amiloride in normal human adults. Am. J. Respir. Crit. Care Med. 154, 217–223.PubMedGoogle Scholar
  26. 26.
    Wilschanski, M., Dupuis, A., Ellis, L., Jarvi, K., Zielenski, J., Tullis, E. et al. (2006) Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am. J. Respir. Crit. Care Med. 174, 787–794.PubMedCrossRefGoogle Scholar
  27. 27.
    Fajac, I., Hubert, D., Guillemot, D., Honoré, I., Bienvenu, T., Volter, F. et al. (2004) Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients. Thorax 59, 971–976.PubMedCrossRefGoogle Scholar
  28. 28.
    Solomon, G. M., Konstan, M. W., Wilschanski, M., Billings, J., Sermet-Gaudelus, I., Accurso, F., Vermeulen, F., Levin, E., Hathorne, H., Reeves, G., Sabbatini, G., Hill, A., Mayer-Hamblett, N., Ashlock, M., Clancy, J. P., and Rowe, S. M. (2010) An international randomized multicenter comparison of nasal potential difference techniques. Chest 138, 919–928.PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen, M., Beamer, J. R., Clancy, J. P. et al. (2008) Centralized production and long term stability of electrolytes and amiloride in solutions for nasal potential difference testing. Pediatr. Pulmonol. Suppl. 31, A275.Google Scholar
  30. 30.
    Wilschanski, M., Famini, H., Strauss-Liviatan, N., Rivlin, J., Blau, H., Bibi, H. et al. (2001) Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur. Respir. J. 17, 1208–1215.PubMedCrossRefGoogle Scholar
  31. 31.
    Sermet-Gaudelus, I., Renouil, M., Fajac, A., Bidou, L., Parbaille, B., Pierrot, S. et al. (2007) In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: A pilot study. BMC Med. 5, 5.PubMedCrossRefGoogle Scholar
  32. 32.
    Leal, T., Lebacq, J., Lebecque, P., Cumps, J., and Wallemacq, P. (2003) Modified method to measure nasal potential difference. Clin. Chem. Lab. Med. 41, 61–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahrens, R. C., Standaert, T. A., Launspach, J., Han, S. H., Teresi, M. E., Aitken, M. L. et al. (2002) Use of nasal potential difference and sweat chloride as outcome measures in multicenter clinical trials in subjects with cystic fibrosis. Pediatr. Pulmonol. 33, 142–150.PubMedCrossRefGoogle Scholar
  34. 34.
    Yaakov, Y., Kerem, E., Yahav, Y., Rivlin, J., Blau, H., Bentur, L. et al. (2007) Reproducibility of nasal potential difference measurements in cystic fibrosis. Chest 132, 1219–1226.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Steven M. Rowe
    • 1
    Email author
  • John Paul Clancy
    • 1
  • Michael Wilschanski
    • 2
  1. 1.Departments of Medicine, Pediatrics, and Physiology and Biophysics MCLMUniversity of AlabamaBirminghamUSA
  2. 2.Pediatric Gastroenterology, Hadassah University HospitalsJerusalemIsrael

Personalised recommendations