Advertisement

Use of Primary Cultures of Human Bronchial Epithelial Cells Isolated from Cystic Fibrosis Patients for the Pre-clinical Testing of CFTR Modulators

  • Timothy Neuberger
  • Bill Burton
  • Heather Clark
  • Fredrick Van GoorEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 741)

Abstract

The use of human bronchial epithelial (HBE) cell cultures derived from the bronchi of CF patients offers the opportunity to study the effects of CFTR correctors and potentiators on CFTR function and epithelial cell biology in the native pathological environment. Cultured HBE cells derived from CF patients exhibit many of the morphological and functional characteristics believed to be associated with CF airway disease in vivo, including abnormal ion and fluid transport leading to dehydration of the airway surface and the loss of cilia beating. In addition, they can be generated in sufficient quantities to support routine lab testing of compound potency and efficacy and retain reproducible levels of CFTR function over time. Here we describe the development and validation of the CF HBE pharmacology model and its use to characterize, optimize, and select clinical candidates. It is expected that the pre-clinical testing of CFTR potentiators and correctors using epithelial cell cultures derived from CF patients will help to increase their likelihood of clinical efficacy.

Key words

Cystic fibrosis transmembrane conductance regulator CFTR potentiators CFTR correctors Transepithelia current Airway surface liquid Cilia beat frequency 

References

  1. 1.
    Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A. et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.PubMedCrossRefGoogle Scholar
  2. 2.
    Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z. et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.PubMedCrossRefGoogle Scholar
  3. 3.
    Berger, H. A., Anderson, M. P., Gregory, R. J., Thompson, S., Howard, P. W., Maurer, R. A. et al. (1991) Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Invest. 88, 1422–1431.PubMedCrossRefGoogle Scholar
  4. 4.
    Knowles, M., Gatzy, J., and Boucher, R. (1983) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J. Clin. Invest. 71, 1410–1417.PubMedCrossRefGoogle Scholar
  5. 5.
    Li, C., Ramjeesingh, M., Wang, W., Garami, E., Hewryk, M., Lee, D. et al. (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 271, 28463–28468.PubMedCrossRefGoogle Scholar
  6. 6.
    Quinton, P. M. (1983) Chloride impermeability in cystic fibrosis. Nature 301, 421–422.PubMedCrossRefGoogle Scholar
  7. 7.
    Welsh, M. J., and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Cao, D., Neuberger, T. et al. (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106, 18825–18830.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Goor, F., Hadida, S., and Grootenhuis, P. D. J. (2008) Pharmacological Rescue of mutant CFTR function for the treatment of cystic fibrosis. Top. Medic. Chem. 3, 29.Google Scholar
  10. 10.
    Van Goor, F., Straley, K. S., Cao, D., Gonzalez, J., Hadida, S., Hazlewood, A. et al. (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1117–1130.CrossRefGoogle Scholar
  11. 11.
    Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J. et al. (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571.PubMedCrossRefGoogle Scholar
  12. 12.
    Boucher, R. C. (2007) Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med. 13, 231–240.PubMedCrossRefGoogle Scholar
  13. 13.
    Jiang, C., Finkbeiner, W. E., Widdicombe, J. H., McCray, P. B., Jr., and Miller, S. S. (1993) Altered fluid transport across airway epithelium in cystic fibrosis. Science 262, 424–427.PubMedCrossRefGoogle Scholar
  14. 14.
    Sisson, J. H., Stoner, J. A., Ammons, B. A., and Wyatt, T. A. (2003) All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 211, 103–111.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibson, R. L., Burns, J. L., and Ramsey, B. W. (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951.PubMedCrossRefGoogle Scholar
  16. 16.
    Souma, T. (1987) The distribution and surface ultrastructure of airway epithelial cells in the rat lung: a scanning electron microscopic study. Arch. Histol. Jpn. 50, 419–436.PubMedCrossRefGoogle Scholar
  17. 17.
    Knowles, M. R., Paradiso, A. M., and Boucher, R. C. (1995) In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 6, 445–455.PubMedCrossRefGoogle Scholar
  18. 18.
    Ahrens, R. C., Standaert, T. A., Launspach, J., Han, S. H., Teresi, M. E., Aitken, M. L. et al. (2002) Use of nasal potential difference and sweat chloride as outcome measures in multicenter clinical trials in subjects with cystic fibrosis. Pediatr. Pulmonol. 33, 142–150.PubMedCrossRefGoogle Scholar
  19. 19.
    Blouquit, S., Sari, A., Lombet, A., D’Herbomez, M., Naline, E., Matran, R. et al. (2003) Effects of endothelin-1 on epithelial ion transport in human airways. Am. J. Respir. Cell. Mol. Biol. 29, 245–251.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Timothy Neuberger
    • 1
  • Bill Burton
    • 1
  • Heather Clark
    • 1
  • Fredrick Van Goor
    • 1
    Email author
  1. 1.Vertex Pharmaceuticals IncorporatedSan DiegoUSA

Personalised recommendations