How to Measure CFTR-Dependent Bicarbonate Transport: From Single Channels to the Intact Epithelium

  • Martin J. Hug
  • Lane L. Clarke
  • Michael A. GrayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3 transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.

Key words

Bicarbonate transport epithelial cells cystic fibrosis CFTR patch clamp technique pH stat Ussing chambers intracellular pH fluorescent dyes 



MJH acknowledges generous support from Mukoviszidose e.V. (N03/07), Innovative Medizinische Förderung Münster (HU 1 1 01 03), and EuroCare CF (LSHM-CT-2005-018932). LLC acknowledges the technical assistance of Erin E. Hoover and support from the National Institutes of Health (DK48816). MAG gratefully acknowledges support from the Welcome Trust (079673), the Cystic Fibrosis Trust (PJ540), and the Royal Society (2006R1/JP).


  1. 1.
    Molleman, A. (2003) Patch clamping: an introductory guide to patch clamp electrophysiology, Wiley, Chichester, ISBN 047148685X.Google Scholar
  2. 2.
    Clarke, L. L. (2009) A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. 296, G1151–G1166.CrossRefGoogle Scholar
  3. 3.
    Frizzell, R. A., and Schultz, S. G. (1972) Ionic conductances of extracellular shunt pathway in rabbit ileum: influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59, 318–337.PubMedCrossRefGoogle Scholar
  4. 4.
    Flemstrom, G., Hallgren, A., Nylander, O., Engstrand, L., Wilander, E., and Allen, A. (1999) Adherent surface mucus gel restricts diffusion of macromolecules in rat duodenum in vivo. Am. J. Physiol. 277, G375–G382.PubMedGoogle Scholar
  5. 5.
    Sandberg, J. W., Lau, C., Jacomino, M., Finegold, M., and Henning, S. J. (1994) Improving access to intestinal stem cells as a step toward intestinal gene transfer. Hum. Gene Ther. 5, 323–329.PubMedCrossRefGoogle Scholar
  6. 6.
    Phillips, T. E. (1992) Both crypt and villus intestinal goblet cells secrete mucin in response to cholinergic stimulation. Am. J. Physiol. 262, G327–G331.PubMedGoogle Scholar
  7. 7.
    Rink, T. J., Tsien, R. Y., and Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95, 189–196.PubMedCrossRefGoogle Scholar
  8. 8.
    Paradiso, A. M., Tsien, R. Y., and Machen, T. E. (1984) Na+-H+ exchange in gastric glands as measured with a cytoplasmic-trapped, fluorescent pH indicator. Proc. Natl. Acad. Sci. USA 81, 7436–7440.PubMedCrossRefGoogle Scholar
  9. 9.
    Barry, P. H., and Lynch, J. W. (1991) Liquid junction potentials and small cell effects in patch clamp analysis. J. Membr. Biol. 121, 101–117.PubMedCrossRefGoogle Scholar
  10. 10.
    Gray, M. A., Plant, S., and Argent, B. E. (1993) cAMP regulated whole cell chloride currents in pancreatic duct cells. Am. J. Physiol. 264, C591–C602.PubMedGoogle Scholar
  11. 11.
    O’Reilly, C. M., Winpenny, J. P., Argent, B. E., and Gray, M. A. (2000) Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions. Gastroenterology 118, 1187–1196.PubMedCrossRefGoogle Scholar
  12. 12.
    Tabcharani, J. A., Rommens, J. M., Hou, Y. X., Chang, X. B., Tsui, L. C., Riordan, J. R., et al. (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366, 79–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Wright, A. M., Gong, X., Verdon, B., Linsdell, P., Mehta, A., Riordan, J. R., et al. (2004) Novel regulation of the cystic fibrosis transmembrane conductance regulator(CFTR) channel gating by external chloride. J. Biol. Chem. 279, 41658–41663.PubMedCrossRefGoogle Scholar
  14. 14.
    Gray, M. A., Pollard, C. E., Harris, A., Coleman, L., Greenwell, J. R., and Argent, B. E. (1990) Anion selectivity and block of the small conductance chloride channel on pancreatic duct cells. Am. J. Physiol. 259, C752–C761.PubMedGoogle Scholar
  15. 15.
    Poulsen, J. H., Fisher, H., Illek, B., and Machen, T. E. (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 91, 5340–5344.PubMedCrossRefGoogle Scholar
  16. 16.
    Linsdell, P., Tabcharani, J. A., Rommens, J. M., Hou, Y. X., Chang, X. B., Tsui, L. C., et al. (1997) Permeability of wild type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 110, 355–364.PubMedCrossRefGoogle Scholar
  17. 17.
    Tang, L., Fatehi, M., and Linsdell, P. (2009) Mechanism of direct bicarbonate transport by the CFTR anion channel. J. Cyst. Fibros. 8, 115–121.PubMedCrossRefGoogle Scholar
  18. 18.
    Linsdell, P., Tabcharani, J. A., and Hanrahan, J. W. (1997) Multi-ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 110, 365–377.PubMedCrossRefGoogle Scholar
  19. 19.
    Linsdell, P. (2001) Thiocyanate as a probe of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Can. J. Physiol. Pharmacol. 79, 573–579.PubMedCrossRefGoogle Scholar
  20. 20.
    Walker, N. M., Flagella, M., Gawenis, L. R., Shull, G. E., and Clarke, L. L. (2002) An alternate pathway of cAMP-stimulated Cl secretion across the NKCC1-null murine duodenum. Gastroenterology 123, 531–541.PubMedCrossRefGoogle Scholar
  21. 21.
    Chaillet, J. R., and Boron, W. F. (1985) Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules. J. Gen. Physiol. 86, 765–794.PubMedCrossRefGoogle Scholar
  22. 22.
    Vigne, P., Frelin, C., Cragoe, E. J., and Lazdunski, M. (1983) Ethylisopropyl-amiloride: a new and highly potent derivative of amiloride for the inhibition of the Na+/H+ exchange system in various cell types. Biochem. Biophys. Res. Commun. 116, 86–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmid, A., Scholz, W., Lang, H. J., and Popp, R. (1992) Na+/H+ exchange in porcine cerebral capillary endothelial cells is inhibited by a benzoylguanidine derivative. Biochem. Biophys. Res. Commun. 184, 112–117.PubMedCrossRefGoogle Scholar
  24. 24.
    Scholz, W., Albus, U., Counillon, L., Gögelein, H., Lang, H. J., and Linz, W. (1995) Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc. Res. 29, 260–268.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin J. Hug
    • 1
  • Lane L. Clarke
    • 2
  • Michael A. Gray
    • 3
    Email author
  1. 1.PharmacyUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Department of Biomedical SciencesDalton Cardiovascular Research Center, University of MissouriColumbiaUSA
  3. 3.Epithelial Research GroupInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle Upon TyneUK

Personalised recommendations