Advertisement

Application of High-Resolution Single-Channel Recording to Functional Studies of Cystic Fibrosis Mutants

  • Zhiwei CaiEmail author
  • Yoshiro Sohma
  • Silvia G. Bompadre
  • David N. Sheppard
  • Tzyh-Chang Hwang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 741)

Abstract

The patch-clamp technique is a powerful and versatile method to investigate the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, its malfunction in disease and modulation by small molecules. Here, we discuss how the molecular behaviour of CFTR is investigated using high-resolution single-channel recording and kinetic analyses of channel gating. We review methods used to quantify how cystic fibrosis (CF) mutants perturb the biophysical properties and regulation of CFTR. By explaining the relationship between macroscopic and single-channel currents, we demonstrate how single-channel data provide molecular explanations for changes in CFTR-mediated transepithelial ion transport elicited by CF mutants.

Key words

ATP-binding cassette transporter CFTR chloride ion channel patch-clamp technique single-channel recording channel gating 

Notes

Acknowledgments

We thank our laboratory colleagues for valuable discussions. During the preparation of this chapter, DN Sheppard was supported by the Cystic Fibrosis Trust and EuroCareCF (LSHM-CT-2005-018932), Y Sohma by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) (19590215 and 22590212) and T-C Hwang by the National Institutes of Health (R01DK55835 and R01HL53445) and Cystic Fibrosis Foundation.

References

  1. 1.
    Neher, E., and Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802.PubMedCrossRefGoogle Scholar
  2. 2.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Ostedgaard, L. S., Baldursson, O., and Welsh, M. J. (2001) Regulation of the cystic fibrosis transmembrane conductance regulator Cl channel by its R domain. J. Biol. Chem. 276, 7689–7692.PubMedCrossRefGoogle Scholar
  4. 4.
    Gadsby, D. C., Vergani, P., and Csanády, L. (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440, 477–483.PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang, T. C., and Sheppard, D. N. (2009) Gating of the CFTR Cl channel by ATP-driven nucleotide-binding domain dimerisation. J. Physiol. 587, 2151–2161.PubMedCrossRefGoogle Scholar
  6. 6.
    Sakmann, B., and Neher, E. (1995) Single-channel recording, 2nd ed. Plenum, New York, NY.Google Scholar
  7. 7.
    Hug, M. J. (2002) The whole-cell patch-clamp technique – a powerful tool to approach CFTR function. Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  8. 8.
    Gray, M. A. (2002) Investigating the properties of the CFTR channel using the cell-attached configuration of the patch clamp – monitoring single channel activity in a living cell. Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  9. 9.
    Hanrahan, J. W., Kone, Z., Mathews, C. J., Luo, J., Jia, Y., and Linsdell, P. (1998) Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods Enzymol. 293, 169–194.PubMedCrossRefGoogle Scholar
  10. 10.
    Scott-Ward, T. S., Chen, J. H., Li, H., Cai, Z., and Sheppard, D. N. (2002) Measurement of Cl flow through CFTR channels using the excised inside-out patch-clamp Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  11. 11.
    Gong, X., Gupta, J., and Linsdell, P. (2002) Measurement of the permeation and conduction properties of the CFTR chloride channel using excised inside-out membrane. Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  12. 12.
    Sohma, Y., and Hwang, T. C. (2002) Kinetic analysis of CFTR single-channel data. Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  13. 13.
    Cai, Z., Scott-Ward, T. S., Li, H., Schmidt, A., and Sheppard, D. N. (2002) Strategies to investigate the mechanism of action of CFTR modulators Virtual Repository of Methods and Reagents for CFTR Expression and Functional Studies. http://central.igc.gulbenkian.pt/cftr/vr/physiology.html. Accessed 11 March 2010.
  14. 14.
    Sheppard, D. N., and Robinson, K. A. (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J. Physiol. 503, 333–346.PubMedCrossRefGoogle Scholar
  15. 15.
    Lansdell, K. A., Delaney, S. J., Lunn, D. P., Thomson, S. A., Sheppard, D. N., and Wainwright, B. J. (1998) Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl channels expressed in mammalian cells. J. Physiol. 508, 379–392.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.PubMedCrossRefGoogle Scholar
  18. 18.
    Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., et al. (1991) Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799.PubMedCrossRefGoogle Scholar
  19. 19.
    Scott-Ward, T. S., Cai, Z., Dawson, E. S., Doherty, A., Da Paula, A. C., Davidson, H., et al. (2007) Chimeric constructs endow the human CFTR Cl channel with the gating behavior of murine CFTR. Proc. Natl. Acad. Sci. USA 104, 16365–16370.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu, J. V., Joo, N. S., Krouse, M. E., and Wine, J. J. (2001) Cystic fibrosis transmembrane conductance regulator gating requires cytosolic electrolytes. J. Biol. Chem. 276, 6473–6478.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishihara, H., and Welsh, M. J. (1997) Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis. Am. J. Physiol. 273, C1278–C1289.PubMedGoogle Scholar
  22. 22.
    Tabcharani, J. A., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, J. H., Cai, Z., and Sheppard, D. N. (2009) Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel. J. Biol. Chem. 284, 35495–35506.PubMedCrossRefGoogle Scholar
  24. 24.
    Hughes, L. K., Ju, M., and Sheppard, D. N. (2008) Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl currents by the chemical solvent tetrahydrofuran. Mol. Membr. Biol. 25, 528–538.PubMedCrossRefGoogle Scholar
  25. 25.
    Cai, Z., Scott-Ward, T. S., and Sheppard, D. N. (2003) Voltage-dependent gating of the cystic fibrosis transmembrane conductance regulator Cl channel. J. Gen. Physiol. 122, 605–620.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou, Z., Hu, S., and Hwang, T. C. (2001) Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore. J. Physiol. 532, 435–448.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson, M. P., Berger, H. A., Rich, D. P., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67, 775–784.PubMedCrossRefGoogle Scholar
  28. 28.
    Schultz, B. D., Frizzell, R. A., and Bridges, R. J. (1999) Rescue of dysfunctional ΔF508-CFTR chloride channel activity by IBMX. J. Membr. Biol. 170, 51–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Bompadre, S. G., Cho, J. H., Wang, X., Zou, X., Sohma, Y., Li, M., et al. (2005) CFTR gating II: effects of nucleotide binding on the stability of open states. J. Gen. Physiol. 125, 377–394.PubMedCrossRefGoogle Scholar
  30. 30.
    Linsdell, P., and Hanrahan, J. W. (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J. Physiol. 496, 687–693.PubMedGoogle Scholar
  31. 31.
    Zhou, Z., Hu, S., and Hwang, T. C. (2002) Probing an open CFTR pore with organic anion blockers. J. Gen. Physiol. 120, 647–662.PubMedCrossRefGoogle Scholar
  32. 32.
    Csanády, L., Chan, K. W., Seto-Young, D., Kopsco, D. C., Nairn, A. C., and Gadsby, D. C. (2000) Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. J. Gen. Physiol. 116, 477–500.PubMedCrossRefGoogle Scholar
  33. 33.
    Cai, Z., and Sheppard, D. N. (2002) Phloxine B interacts with the cystic fibrosis transmembrane conductance regulator at multiple sites to modulate channel activity. J. Biol. Chem. 277, 19546–19553.PubMedCrossRefGoogle Scholar
  34. 34.
    Hwang, T. C., Nagel, G., Nairn, A. C., and Gadsby, D. C. (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 4698–4702.PubMedCrossRefGoogle Scholar
  35. 35.
    Carson, M. R., Winter, M. C., Travis, S. M., and Welsh, M. J. (1995) Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl channels. J. Biol. Chem. 270, 20466–20472.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsai, M. F., Shimizu, H., Sohma, Y., Li, M., and Hwang, T. C. (2009) State-dependent modulation of CFTR gating by pyrophosphate. J. Gen. Physiol. 133, 405–419.PubMedCrossRefGoogle Scholar
  37. 37.
    Cai, Z., Taddei, A., and Sheppard, D. N. (2006) Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel. J. Biol. Chem. 281, 1970–1977.PubMedCrossRefGoogle Scholar
  38. 38.
    Bompadre, S. G., Sohma, Y., Li, M., and Hwang, T. C. (2007) G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J. Gen. Physiol. 129, 285–298.PubMedCrossRefGoogle Scholar
  39. 39.
    Venglarik, C. J., Schultz, B. D., Frizzell, R. A., and Bridges, R. J. (1994) ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism. J. Gen. Physiol. 104, 123–146.PubMedCrossRefGoogle Scholar
  40. 40.
    Zeltwanger, S., Wang, F., Wang, G. T., Gillis, K. D., and Hwang, T. C. (1999) Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J. Gen. Physiol. 113, 541–554.PubMedCrossRefGoogle Scholar
  41. 41.
    Aleksandrov, A. A., and Riordan, J. R. (1998) Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 431, 97–101.PubMedCrossRefGoogle Scholar
  42. 42.
    Baukrowitz, T., Hwang, T. C., Nairn, A. C., and Gadsby, D. C. (1994) Coupling of CFTR Cl channel gating to an ATP hydrolysis cycle. Neuron 12, 473–482.PubMedCrossRefGoogle Scholar
  43. 43.
    Bompadre, S. G., Ai, T., Cho, J. H., Wang, X., Sohma, Y., Li, M., et al. (2005) CFTR gating I: characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (ΔR-CFTR). J. Gen. Physiol. 125, 361–375.PubMedCrossRefGoogle Scholar
  44. 44.
    Sigurdson, W. J., Morris, C. E., Brezden, B. L., and Gardner, D. R. (1987) Stretch activation of a K+ channel in molluscan heart cells. J. Exp. Biol. 127, 191–209.Google Scholar
  45. 45.
    Li, C., Ramjeesingh, M., Wang, W., Garami, E., Hewryk, M., Lee, D., et al. (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 271, 28463–28468.PubMedCrossRefGoogle Scholar
  46. 46.
    Weinreich, F., Riordan, J. R., and Nagel, G. (1999) Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. J. Gen. Physiol. 114, 55–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Vergani, P., Lockless, S. W., Nairn, A. C., and Gadsby, D. C. (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433, 876–880.PubMedCrossRefGoogle Scholar
  48. 48.
    Vergani, P., Nairn, A. C., and Gadsby, D. C. (2003) On the mechanism of MgATP-dependent gating of CFTR Cl channels. J. Gen. Physiol. 121, 17–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou, Z., Wang, X., Liu, H. Y., Zou, X., Li, M., and Hwang, T. C. (2006) The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. J. Gen. Physiol. 128, 413–422.PubMedCrossRefGoogle Scholar
  50. 50.
    Csanády, L., Vergani, P., and Gadsby, D. C. (2010) Strict coupling between CFTR’s catalytic cycle and gating of its Cl ion pore revealed by distributions of open channel burst durations. Proc. Natl. Acad. Sci. USA 107, 1241–1246.PubMedCrossRefGoogle Scholar
  51. 51.
    Colquhoun, D., and Hawkes, A. G. (1995) The principles of stochastic interpretation of ion-channel mechanisms, in (Sakmann, B., Neher, E. eds.) Single-channel recording, 2nd ed. Plenum, New York, NY.Google Scholar
  52. 52.
    Blatz, A. L., and Magleby, K. L. (1986) Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle. J. Physiol. 378, 141–174.PubMedGoogle Scholar
  53. 53.
    Welsh, M. J., and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.PubMedCrossRefGoogle Scholar
  54. 54.
    Zielenski, J., and Tsui, L. C. (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu. Rev. Genet. 29, 777–807.PubMedCrossRefGoogle Scholar
  55. 55.
    Hwang, T. C., Wang, F., Yang, I. C., and Reenstra, W. W. (1997) Genistein potentiates wild-type and F508-CFTR channel activity. Am. J. Physiol. 273, C988–C998.PubMedGoogle Scholar
  56. 56.
    Al-Nakkash, L., and Hwang, T. C. (1999) Activation of wild-type and ΔF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms. Pflugers Arch. 437, 553–561.PubMedCrossRefGoogle Scholar
  57. 57.
    Dalemans, W., Barbry, P., Champigny, G., Jallat, S., Dott, K., Dreyer, D., et al. (1991) Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature 354, 526–528.PubMedCrossRefGoogle Scholar
  58. 58.
    Hegedus, T., Aleksandrov, A., Cui, L., Gentzsch, M., Chang, X. B., and Riordan, J. R. (2006) F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Biochim. Biophys. Acta 1758, 565–572.PubMedCrossRefGoogle Scholar
  59. 59.
    Sheppard, D. N., Rich, D. P., Ostedgaard, L. S., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1993) Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362, 160–164.PubMedCrossRefGoogle Scholar
  60. 60.
    Gong, X., and Linsdell, P. (2004) Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Arch. Biochem. Biophys. 426, 78–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Linsdell, P. (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Physiol. 531, 51–66.PubMedCrossRefGoogle Scholar
  62. 62.
    Sheppard, D. N., Travis, S. M., Ishihara, H., and Welsh, M. J. (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J. Biol. Chem. 271, 14995–15001.PubMedCrossRefGoogle Scholar
  63. 63.
    Akabas, M. H., Kaufmann, C., Cook, T. A., and Archdeacon, P. (1994) Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 14865–14868.PubMedGoogle Scholar
  64. 64.
    Zegarra-Moran, O., Romio, L., Folli, C., Caci, E., Becq, F., Vierfond, J. M., et al. (2002) Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. Br. J. Pharmacol. 137, 504–512.PubMedCrossRefGoogle Scholar
  65. 65.
    Sheppard, D. N., Ostedgaard, L. S., Winter, M. C., and Welsh, M. J. (1995) Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency. EMBO J. 14, 876–883.PubMedGoogle Scholar
  66. 66.
    Haws, C. M., Nepomuceno, I. B., Krouse, M. E., Wakelee, H., Law, T., Xia, Y., et al. (1996) ΔF508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270, C1544–C1555.PubMedGoogle Scholar
  67. 67.
    Wang, F., Zeltwanger, S., Hu, S., and Hwang, T. C. (2000) Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. J. Physiol. 524, 637–648.PubMedCrossRefGoogle Scholar
  68. 68.
    Sheppard, D. N., and Ostedgaard, L. S. (1996) Understanding how cystic fibrosis mutations cause a loss of Cl channel function. Mol. Med. Today 2, 290–297.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhiwei Cai
    • 1
    Email author
  • Yoshiro Sohma
    • 2
  • Silvia G. Bompadre
    • 3
  • David N. Sheppard
    • 1
  • Tzyh-Chang Hwang
    • 3
  1. 1.Department of Physiology and PharmacologySchool of Medical Sciences, University of BristolBristolUK
  2. 2.Department of Pharmacology and NeuroscienceKeio University School of MedicineTokyoJapan
  3. 3.Department of Medical Pharmacology and PhysiologyDalton Cardiovascular Research Center, University of Missouri-ColumbiaColumbiaUSA

Personalised recommendations