Skip to main content

CFTR Three-Dimensional Structure

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

CFTR is a member of the ATP-binding cassette family of membrane proteins. This is one of the best characterised membrane protein families in terms of structure and function. CFTR operates as an ion channel, unlike nearly all other family members which are active transporters. Here, we discuss methods that have allowed such data to be obtained for CFTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rees, D. C., Johnson, E., and Lewinson, O. (2009) ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227.

    Article  PubMed  CAS  Google Scholar 

  2. Riordan, J. R. (2008) CFTR function and prospects for therapy. Annu. Rev. Biochem. 77, 701–726.

    Article  PubMed  CAS  Google Scholar 

  3. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  4. Kos, V., and Ford, R. C. (2009) The ATP-binding cassette family: A structural perspective. Cell. Mol. Life Sci. 66, 3111–3126.

    Article  PubMed  CAS  Google Scholar 

  5. Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722.

    Article  PubMed  CAS  Google Scholar 

  6. Dawson, R. J., and Locher, K. P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.

    Article  PubMed  CAS  Google Scholar 

  7. Dawson, R. J., and Locher, K. P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938.

    Article  PubMed  CAS  Google Scholar 

  8. Hollenstein, K., Frei, D. C., and Locher, K. P. (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216.

    Article  PubMed  CAS  Google Scholar 

  9. Locher, K. P. (2004) Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 14, 426–431.

    Article  PubMed  CAS  Google Scholar 

  10. Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  11. McDevitt, C. A., Shintre, C. A., Grossmann, J. G., Pollock, N. L., Prince, S. M., Callaghan, R., et al. (2008) Structural insights into P-glycoprotein (ABCB1) by small angle X-ray scattering and electron crystallography. FEBS Lett. 582, 2950–2956.

    Article  PubMed  CAS  Google Scholar 

  12. Oldham, M. L., Davidson, A. L., and Chen, J. (2008) Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 18, 726–733.

    Article  PubMed  CAS  Google Scholar 

  13. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L., and Chen, J. (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.

    Article  PubMed  CAS  Google Scholar 

  14. Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P., and Rees, D. C. (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377.

    Article  PubMed  CAS  Google Scholar 

  15. Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. USA 104, 19005–19010.

    Article  PubMed  CAS  Google Scholar 

  16. Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A., and Rees, D. C. (2008) The high-affinity E. coli methionine ABC transporter: Structure and allosteric regulation. Science 321, 250–253.

    Article  PubMed  CAS  Google Scholar 

  17. Holzenburg, A., Wilson, F. H., Finbow, M. E., and Ford, R. C. (1992) Structural investigations of membrane proteins: The versatility of electron microscopy. Biochem. Soc. Trans. 20, 591–597.

    PubMed  CAS  Google Scholar 

  18. Bremer, A., Henn, C., Engel, A., Baumeister, W., and Aebi, U. (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46, 85–111.

    Article  PubMed  CAS  Google Scholar 

  19. Brenner, S., and Horne, R. W. (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34, 103–110.

    Article  PubMed  CAS  Google Scholar 

  20. Harris, J. R., and Holzenburg, A. (1995) Human erythrocyte catalase: 2-D crystal nucleation and production of multiple crystal forms. J. Struct. Biol. 115, 102–112.

    Article  PubMed  CAS  Google Scholar 

  21. Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W., et al. (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.

    Article  PubMed  CAS  Google Scholar 

  22. Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193.

    Article  PubMed  CAS  Google Scholar 

  23. Henderson, R. (2004) Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37, 3–13.

    Article  PubMed  CAS  Google Scholar 

  24. Knapek, E., and Dubochet, J. (1980) Beam damage to organic material is considerably reduced in cryo-electron microscopy. J. Mol. Biol. 141, 147–161.

    Article  PubMed  CAS  Google Scholar 

  25. Auer, M., Scarborough, G. A., and Kuhlbrandt, W. (1999) Surface crystallisation of the plasma membrane H+-ATPase on a carbon support film for electron crystallography. J. Mol. Biol. 287, 961–968.

    Article  PubMed  CAS  Google Scholar 

  26. Auer, M., Scarborough, G. A., and Kuhlbrandt, W. (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392, 840–843.

    Article  PubMed  CAS  Google Scholar 

  27. Auer, M., Madden, D. R., Kuhlbrandt, W., and Scarborough, G. A. (1998) Structure of the neurospora plasma membrane H+-ATPase at 8 angstrom resolution. Biophys. J. 74, A43–A43.

    Google Scholar 

  28. Rosenberg, M. F., Callaghan, R., Modok, S., Higgins, C. F., and Ford, R. C. (2005) Three-dimensional structure of P-glycoprotein – The transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem. 280, 2857–2862.

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Ford, R. C., and Riordan, J. R. (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Biol. Chem. 279, 39051–39057.

    Article  PubMed  CAS  Google Scholar 

  30. Lewis, H. A., Buchanan, S. G., Burley, S. K., Conners, K., Dickey, M., Dorwart, M. et al (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis, H. A., Zhao, X., Wang, C., Sauder, J. M., Rooney, I., Noland, B. W., et al. (2005) Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem. 280, 1346–1353.

    Article  PubMed  CAS  Google Scholar 

  32. Karthikeyan, S., Leung, T., Birrane, G., Webster, G., and Ladias, J. A. (2001) Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class I PDZ domains. J. Mol. Biol. 308, 963–973.

    Article  PubMed  CAS  Google Scholar 

  33. Baker, J. M., Hudson, R. P., Kanelis, V., Choy, W. Y., Thibodeau, P. H., Thomas, P. J., et al. (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738–745.

    Article  PubMed  CAS  Google Scholar 

  34. Cormet-Boyaka, E., Jablonsky, M., Naren, A. P., Jackson, P. L., Muccio, D. D., and Kirk, K. L. (2004) Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation. Proc. Natl. Acad. Sci. USA 101, 8221–8226.

    Article  PubMed  CAS  Google Scholar 

  35. Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., et al. (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  36. Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H. (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat. Struct. Biol. 2, 842–846.

    Article  PubMed  CAS  Google Scholar 

  37. Tate, C. G., and Schertler, G. F. (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr. Opin. Struct. Biol. 19, 386–395.

    Article  PubMed  CAS  Google Scholar 

  38. Drew, D., Newstead, S., Sonoda, Y., Kim, H., von Heijne, G., and Iwata, S. (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat. Protoc. 3, 784–798.

    Article  PubMed  CAS  Google Scholar 

  39. Chloupkova, M., Pickert, A., Lee, J. Y., Souza, S., Trinh, Y. T., Connelly, S. M., et al. (2007) Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46, 7992–8003.

    Article  PubMed  CAS  Google Scholar 

  40. Eifler, N., Duckely, M., Sumanovski, L. T., Egan, T. M., Oksche, A., Konopka, J. B., et al. (2007) Functional expression of mammalian receptors and membrane channels in different cells. J. Struct. Biol. 159, 179–193.

    Article  PubMed  CAS  Google Scholar 

  41. Ludtke, S. J., Baldwin, P. R., and Chiu, W. (1999) EMAN: Semi-automated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.

    Article  PubMed  CAS  Google Scholar 

  42. Ludtke, S. J., Jakana, J., Song, J. L., Chuang, D. T., and Chiu, W. (2001) A 11.5 A single particle reconstruction of GroEL using EMAN. J. Mol. Biol. 314, 253–262.

    Article  PubMed  CAS  Google Scholar 

  43. Ludtke, S. J., Chen, D. H., Song, J. L., Chuang, D. T., and Chiu, W. (2004) Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  44. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., et al. (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  45. Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., et al. (1996) SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199.

    Article  PubMed  CAS  Google Scholar 

  46. Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs. J. Struct. Biol. 116, 9–16.

    Article  PubMed  CAS  Google Scholar 

  47. Zeng, X., Gipson, B., Zheng, Z. Y., Renault, L., and Stahlberg, H. (2007) Automatic lattice determination for two-dimensional crystal images. J. Struct. Biol. 160, 353–361.

    Article  PubMed  CAS  Google Scholar 

  48. Philippsen, A., Schenk, A. D., Stahlberg, H., and Engel, A. (2003) Iplt-image processing library and toolkit for the electron microscopy community. J. Struct. Biol. 144, 4–12.

    Article  PubMed  Google Scholar 

  49. Gipson, B., Zeng, X., Zhang, Z. Y., and Stahlberg, H. (2007) 2dx – User-friendly image processing for 2D crystals. J. Struct. Biol. 157, 64–72.

    Article  PubMed  CAS  Google Scholar 

  50. Gipson, B., Zeng, X., and Stahlberg, H. (2007) 2dx_merge: Data management and merging for 2D crystal images. J. Struct. Biol. 160, 375–384.

    Article  PubMed  CAS  Google Scholar 

  51. Kunji, E. R. S., von Gronau, S., Oesterhelt, D., and Henderson, R. (2000) The three-dimensional structure of halorhodopsin to 5 angstrom by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. Proc. Natl. Acad. Sci. USA 97, 4637–4642.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to our collaborators at the University of North Carolina (Chapel Hill) led by Professor John Riordan. Without their advice, information, resources and protein, we would not have delved into the CFTR structural world. The authors acknowledge the financial support of the Cystic Fibrosis Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Ford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ford, R.C., Birtley, J., Rosenberg, M.F., Zhang, L. (2011). CFTR Three-Dimensional Structure. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics