Introduction to Section IV: Biophysical Methods to Approach CFTR Structure

  • Juan L. Mendoza
  • André Schmidt
  • Philip J. Thomas
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


Inefficient folding of CFTR into a functional three-dimensional structure is the basic pathophysiologic mechanism leading to most cases of cystic fibrosis. Knowledge of the structure of CFTR and placement of these mutations into a structural context would provide information key for developing targeted therapeutic approaches for cystic fibrosis. As a large polytopic membrane protein containing disordered regions, intact CFTR has been refractory to efforts to solve a high-resolution structure using X-ray crystallography. The following chapters summarize current efforts to circumvent these obstacles by utilizing NMR, electron microscopy, and computational methodologies and by development of experimental models of the relevant domains of CFTR.

Key words

CFTR structure NMR EM crystallography spectroscopy 



The authors are grateful for the support provided by the NIH-NIDDK, Welch Foundation, and the CF Foundation for much of the work summarized. Also we would like to thank the many investigators that have contributed to these studies and our thinking regarding the utility of structural approaches including the authors of   Chapters 22 ,   http://23 , and   http://25 , the members of the CFTR folding consortium, the SGX-CFFT joint research committee, Chad Brautigam, Hanoch Senderowitz, Martin Mense, and former members of the laboratory at UT Southwestern, including Bao-He Qu, Elizabeth Strickland, Michael Dorwart, Patrick Thibodeau, John Richardson, Jarod Watson, and Emmanuel Caspa.


  1. 1.
    Cutting, G. R. (1993) Spectrum of mutations in cystic fibrosis. J. Bioenerg. Biomembr. 25, 7–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066–1073.PubMedCrossRefGoogle Scholar
  3. 3.
    Mendoza, J. L., and Thomas, P. J. (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J. Bioenerg. Biomembr. 39, 499–505.PubMedCrossRefGoogle Scholar
  4. 4.
    Riordan, J. R. (2008) CFTR function and prospects for therapy. Annu. Rev. Biochem. 77, 701–726.PubMedCrossRefGoogle Scholar
  5. 5.
    Choi, J. Y., Joo, N. S., Krouse, M. E., Wu, J. V., Robbins, R. C., Ianowski, J. P., et al. (2007) Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. J. Clin. Invest. 117, 3118–3127.PubMedCrossRefGoogle Scholar
  6. 6.
    Devor, D. C., Bridges, R. J., and Pilewski, J. M. (2000) Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am. J. Physiol. 279, C461–479.Google Scholar
  7. 7.
    Quinton, P. M., and Reddy, M. M. (1992) Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature 360, 79–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Ko, S. B., Zeng, W., Dorwart, M. R., Luo, X., Kim, K. H., Millen, L., et al. (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat. Cell. Biol. 6, 343–350.PubMedCrossRefGoogle Scholar
  9. 9.
    Kunzelmann, K., Kiser, G. L., Schreiber, R., and Riordan, J. R. (1997) Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 400, 341–344.PubMedCrossRefGoogle Scholar
  10. 10.
    Mall, M., Bleich, M., Kuehr, J., Brandis, M., Greger, R., and Kunzelmann, K. (1999) CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Am. J. Physiol. 277, G709–716.Google Scholar
  11. 11.
    Schreiber, R., Hopf, A., Mall, M., Greger, R., and Kunzelmann, K. (1999) The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc. Natl. Acad. Sci. USA 96, 5310–5315.PubMedCrossRefGoogle Scholar
  12. 12.
    Linsdell, P., Zheng, S. X., and Hanrahan, J. W. (1998) Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl channel expressed in mammalian cell lines. J. Physiol. 512, 1–16.PubMedCrossRefGoogle Scholar
  13. 13.
    McCarty, N. A. (2000) Permeation through the CFTR chloride channel. J. Exp. Biol. 203, 1947–1962.PubMedGoogle Scholar
  14. 14.
    Sheppard, D. N., Rich, D. P., Ostedgaard, L. S., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1993) Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362, 160–164.PubMedCrossRefGoogle Scholar
  15. 15.
    Fulmer, S. B., Schwiebert, E. M., Morales, M. M., Guggino, W. B., and Cutting, G. R. (1995) Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc. Natl. Acad. Sci. USA 92, 6832–6836.PubMedCrossRefGoogle Scholar
  16. 16.
    Qu, B. H., Strickland, E., and Thomas, P. J. (1997) Cystic fibrosis: A disease of altered protein folding. J. Bioenerg. Biomembr. 29, 483–490.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas, P. J., Ko, Y. H., and Pedersen, P. L. (1992) Altered protein folding may be the molecular basis of most cases of cystic fibrosis. FEBS Lett. 312, 7–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Gregory, R. J., Rich, D. P., Cheng, S. H., Souza, D. W., Paul, S., Manavalan, P., et al. (1991) Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11, 3886–3893.PubMedGoogle Scholar
  19. 19.
    Hutt, D. M., Herman, D., Rodrigues, A. P., Noel, S., Pilewski, J. M., Matteson, J., et al. (2010) Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol. 6, 25–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, X., Venable, J., LaPointe, P., Hutt, D. M., Koulov, A. V., Coppinger, J., et al. (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815.PubMedCrossRefGoogle Scholar
  21. 21.
    Younger, J. M., Fan, C. Y., Chen, L., Rosser, M. F., Patterson, C., and Cyr, D. M. (2005) Cystic fibrosis transmembrane conductance regulator as a model substrate to study endoplasmic reticulum protein quality control in mammalian cells. Methods Mol. Biol. 301, 293–303.PubMedGoogle Scholar
  22. 22.
    Awayn, N. H., Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Riordan, J. R., and Ford, R. C. (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem. Soc. Trans. 33, 996–999.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleizen, B., van Vlijmen, T., de Jonge, H. R., and Braakman, I. (2005) Folding of CFTR is predominantly cotranslational. Mol. Cell 20, 277–287.PubMedCrossRefGoogle Scholar
  24. 24.
    Cui, L., Aleksandrov, L., Chang, X. B., Hou, Y. X., He, L., Hegedus, T., et al. (2007) Domain interdependence in the biosynthetic assembly of CFTR. J. Mol. Biol. 365, 981–994.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, L., Aleksandrov, L. A., Zhao, Z., Birtley, J. R., Riordan, J. R., and Ford, R. C. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J. Struct. Biol. 167, 242–251.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Ford, R. C., and Riordan, J. R. (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Biol. Chem. 279, 39051–39057.PubMedCrossRefGoogle Scholar
  27. 27.
    Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722.PubMedCrossRefGoogle Scholar
  28. 28.
    Dawson, R. J., and Locher, K. P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.PubMedCrossRefGoogle Scholar
  29. 29.
    Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.PubMedCrossRefGoogle Scholar
  30. 30.
    Huang, S. Y., Bolser, D., Liu, H. Y., Hwang, T. C., and Zou, X. (2009) Molecular modeling of the heterodimer of human CFTR’s nucleotide-binding domains using a protein-protein docking approach. J. Mol. Graph. 27, 822–828.CrossRefGoogle Scholar
  31. 31.
    Moran, O. (2007) Model of the cAMP activation of chloride transport by CFTR channel and the mechanism of potentiators. J. Theor. Biol. 262, 73–79.CrossRefGoogle Scholar
  32. 32.
    Mornon, J. P., Lehn, P., and Callebaut, I. (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell. Mol. Life Sci. 66, 3469–3486.PubMedCrossRefGoogle Scholar
  33. 33.
    Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., et al. (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 105, 3256–3261.PubMedCrossRefGoogle Scholar
  34. 34.
    Atwell, S., Brouillette, C. G., Conners, K., Emtage, S., Gheyi, T., Guggino, W. B., et al. (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng. Des. Sel. 23, 375–384.PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis, H. A., Buchanan, S. G., Burley, S. K., Conners, K., Dickey, M., Dorwart, M., et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293.PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis, H. A., Wang, C., Zhao, X., Hamuro, Y., Conners, K., Kearins, M. C., et al. (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J. Mol. Biol. 396, 406–430.PubMedCrossRefGoogle Scholar
  37. 37.
    Thibodeau, P. H., Brautigam, C. A., Machius, M., and Thomas, P. J. (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat. Struct. Mol. Biol. 12, 10–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Baker, J. M., Hudson, R. P., Kanelis, V., Choy, W. Y., Thibodeau, P. H., Thomas, P. J., et al. (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738–745.PubMedCrossRefGoogle Scholar
  39. 39.
    Kanelis, V., Hudson, R. P., Thibodeau, P. H., Thomas, P. J., and Forman-Kay, J. D. (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J. 29, 263–277.PubMedCrossRefGoogle Scholar
  40. 40.
    Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125.PubMedCrossRefGoogle Scholar
  41. 41.
    Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J., Smith, A. E., and Welsh, M. J. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Juan L. Mendoza
    • 1
  • André Schmidt
    • 1
  • Philip J. Thomas
    • 1
  1. 1.Department of PhysiologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations