Analysis of CFTR Interactome in the Macromolecular Complexes

  • Chunying LiEmail author
  • Anjaparavanda P. Naren
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel localized primarily at the apical surface of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, and transporters, in addition to its role as a chloride conductor. Most interactions occur primarily between the opposing terminal tails (N or C) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. This chapter describes methods we developed to cross-link CFTR into a macromolecular complex to identify and analyze the assembly and regulation of CFTR-containing complexes in the plasma membrane.

Key words

CFTR cross-linking macromolecular complex PDZ protein interacting partner 



We thank Dr David Armbruster for critically reading the manuscript and Ms. Feng Zhou for formatting the references. This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases grants DK058545 and DK074996 (to A.P.N.), and American Heart Association (Midwest Affiliate) Beginning-grant-in-aid #0765185B (to C.L.).


  1. 1.
    Quinton, P. M. (1983) Chloride impermeability in cystic fibrosis. Nature 301, 421–422.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Bear, C. E., Li, C. H., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M., et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818.PubMedCrossRefGoogle Scholar
  4. 4.
    Welsh, M. J., Tsui, L. -C., Boat, T. F., and Beaudet, A. L. (1995) Cystic fibrosis, in (Scriver, C., Beaudet, A. L., Sly, W. S., Valle, D. (eds)) The Metabolic and Molecular Basis of Inherited Diseases: Membrane Transport Systems. McGraw-Hill, New York, NY, pp. 3799–3876.Google Scholar
  5. 5.
    Li, C., and Naren, A. P. (2005) Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther. 108, 208–223.PubMedCrossRefGoogle Scholar
  6. 6.
    Chao, A. C., de Sauvage, F. J., Dong, Y. J., Wagner, J. A., Goeddel, D. V., and Gardner, P. (1994) Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 13, 1065–1072.PubMedGoogle Scholar
  7. 7.
    Dean, M., Rzhetsky, A., and Allikmets, R. (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166.PubMedCrossRefGoogle Scholar
  8. 8.
    Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.PubMedCrossRefGoogle Scholar
  9. 9.
    Guggino, W. B., and Stanton, B. A. (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol. 7, 426–436.PubMedCrossRefGoogle Scholar
  10. 10.
    Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N., Gatzy, J. T., and Boucher, R. C. (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1070.PubMedCrossRefGoogle Scholar
  11. 11.
    Gabriel, S. E., Clarke, L. L., Boucher, R. C., and Stutts, M. J. (1993) CFTR and outwardly rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–268.PubMedCrossRefGoogle Scholar
  12. 12.
    McNicholas, C. M., Guggino, W. B., Schwiebert, E. M., Hebert, S. C., Giebisch, G., and Egan, M. E. (1996) Sensitivity of a renal K+ channel (Romk2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc. Natl. Acad. Sci. USA 93, 8083–8088.PubMedCrossRefGoogle Scholar
  13. 13.
    Kunzelmann, K., Mall, M., Briel, M., Hipper, A., Nitschke, R., Ricken, S., et al. (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl conductance of Xenopus oocytes. Pflugers Arch. 435, 178–181.PubMedCrossRefGoogle Scholar
  14. 14.
    Schreiber, R., Nitschke, R., Greger, R., and Kunzelmann, K. (1999) The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J. Biol. Chem. 274, 11811–11816.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee, M. G., Wigley, W. C., Zeng, W., Noel, L. E., Marino, C. R., Thomas, P. J., et al. (1999) Regulation of Cl/ HCO3 exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J. Biol. Chem. 274, 3414–3421.PubMedCrossRefGoogle Scholar
  16. 16.
    Shumaker, H., Amlal, H., Frizzell, R., Ulrich, C. D., and Soleimani, M. (1999) CFTR drives Na+-nHCO(3)(–) cotransport in pancreatic duct cells: a basis for defective HCO3 secretion in CF. Am. J. Physiol. Cell Physiol. 276, C16–C25.Google Scholar
  17. 17.
    Ahn, W., Kim, K. H., Lee, J. A., Kim, J. Y., Choi, J. Y., Moe, O. W., et al. (2001) Regulatory interaction between the cystic fibrosis transmembrane conductance regulator and HCO3 salvage mechanisms in model systems and the mouse pancreatic duct. J. Biol. Chem. 276, 17236–17243.PubMedCrossRefGoogle Scholar
  18. 18.
    Sugita, M., Yue, Y., and Foskett, J. K. (1998) CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J. 17, 898–908.PubMedCrossRefGoogle Scholar
  19. 19.
    Naren, A. P., Nelson, D. J., Xie, W., Jovov, B., Tousson, A., Pevsner, J., et al. (1997) Regulation of CFTR chloride channels by syntaxin and Munc 18 isoforms. Nature 390, 302–305.PubMedCrossRefGoogle Scholar
  20. 20.
    Naren, A. P., Anke, D., Cormet-Boyaka, E., Boyaka, P. N., McGhee, J. R., Zhou, W., et al.(1999) Syntaxin 1A is expressed in airway epithelial cells where it modulates CFTR Cl currents. J. Clin. Invest. 105, 377–386.CrossRefGoogle Scholar
  21. 21.
    Naren, A. P., Cobb, B., Li, C., Roy, K., Nelson, D., Heda, G. D., et al. (2003) A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc. Natl. Acad. Sci. USA 100, 342–346.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, C., Dandridge, K. S., Di, A., Marrs, K. L., Harris, E. L., Roy, K., et al. (2005) Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J. Exp. Med. 202, 975–986.PubMedCrossRefGoogle Scholar
  23. 23.
    Li, C., Krishnamurthy, P. C., Penmatsa, H., Marrs, K. L., Wang, X. Q., Zaccolo, M. J., et al. (2007) Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131, 940–951.PubMedCrossRefGoogle Scholar
  24. 24.
    Li, C., Schuetz, J. D., and Naren, A. P. (2010) Tobacco carcinogen NNK Transporter MRP2 Regulates CFTR Function in lung epithelia: implications for lung cancer. Cancer Lett. 292, 246–253.Google Scholar
  25. 25.
    Fanning, A. S. and Anderson, J. M. (1999) Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439.PubMedCrossRefGoogle Scholar
  26. 26.
    Harris, B. Z. and Lim, W. A. (2001) Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231.PubMedGoogle Scholar
  27. 27.
    Li, C. and Naren, A. P. (2010) CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr. Biol. 2, 161–177.Google Scholar
  28. 28.
    Hall, R. A., Ostedgaard, L. S., Premont, R. T., Blitzer, J. T., Rahman, N., Welsh, M. J., et al. (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95, 8496–8501.PubMedCrossRefGoogle Scholar
  29. 29.
    Short, D. B., Trotter, K. W., Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19797–19801.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, S., Yue, H., Derin, R. B., Guggino, W. B., and Li, M. (2000) Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 103, 169–179.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun, F., Hug, M. J., Lewarchik, C. M., Yun, C. H., Bradbury, N. A., and Frizzell, R. A. (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J. Biol. Chem. 275, 29539–29546.PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng, J., Moyer, B. D., Milewski, M., Loffing, J., Ikeda, M., Mickle, J. E., et al. (2002) A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J. Biol. Chem. 277, 3520–3529.PubMedCrossRefGoogle Scholar
  33. 33.
    Scott, R. O., Thelin, W. R., and Milgram, S. L. (2002) A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J. Biol. Chem. 277, 22934–22941.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee, J. H., Richter, W., Namkung, W., Kim, K. H., Kim, E., Conti, M., et al. (2007) Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors. J. Biol. Chem. 282, 10414–10422.PubMedCrossRefGoogle Scholar
  35. 35.
    Naren, A. P. (2002) Methods for the study of intermolecular and intramolecular interactions regulating CFTR function. Methods Mol. Med. 70, 175–186.PubMedGoogle Scholar
  36. 36.
    Li, C., Roy, K., Dandridge, K., and Naren, A. P. (2004) Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J. Biol. Chem 279, 24673–24684.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations