In Vitro Methods for CFTR Biogenesis

  • Yoshihiro Matsumura
  • LeeAnn Rooney
  • William R. SkachEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


Cell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination. The first part of this chapter therefore describes parameters that affect in vitro translation of CFTR in RRL. We have found that CFTR expression is uniquely dependent upon 5- and 3-untranslated regions (UTRs) of the mRNA. Full-length CFTR expression can be markedly increased using mRNA lacking a 5-cap analog (G(5)ppp(5)G), whereas the reverse usually holds for smaller proteins and individual CFTR domains. In the context of the full-length mRNA, translation was further stimulated by the presence of a long 3-UTR. The second part of this chapter describes CFTR translation in lysates derived from cultured mammalian cells including human bronchial epithelial cells. Unfortunately, mammalian cell-derived lysates showed limited ability to sustain full-length CFTR synthesis. However, they provide a unique opportunity to examine specific CFTR domains (i.e., nucleotide-binding domain 1 and transmembrane domain 1) under conditions that more closely resemble the native folding environment.

Key words

Bronchial epithelial cells canine pancreatic microsomes cystic fibrosis transmembrane conductance regulator (CFTR) endoplasmic reticulum (ER) in vitro translation membrane protein molecular chaperone protein folding rabbit reticulocyte lysate (RRL) 



We thank Dr. Vladimir V. Zeenko for advice in developing mammalian cell lysates and Zhongying Yang for construction and preparation of plasmids. This work was supported by National Institutes of Health grant DK51818 and the Cystic Fibrosis Foundation Therapeutics (W.R.S.) and the Manpei Suzuki Diabetes Foundation (Y.M.).


  1. 1.
    Skach, W. R. (2009) Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606–612.PubMedCrossRefGoogle Scholar
  2. 2.
    Oberdorf, J., and Skach, W. R. (2002) In vitro reconstitution of CFTR biogenesis and degradation. Methods Mol. Med. 70, 295–310.PubMedGoogle Scholar
  3. 3.
    Carlson, E., Bays, N., David, L., and Skach, W. R. (2005) Reticulocyte lysate as a model system to study endoplasmic reticulum membrane protein degradation. Methods Mol. Biol. 301, 185–205.PubMedGoogle Scholar
  4. 4.
    Kaufman, R. J. (2004) Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem. Sci. 29, 152–158.PubMedCrossRefGoogle Scholar
  5. 5.
    Adamson, S. D., Herbert, E., and Godchaux, W. (1968) Factors affecting the rate of protein synthesis in lysate systems from reticulocytes. Arch. Biochem. Biophys. 125, 671–683.PubMedCrossRefGoogle Scholar
  6. 6.
    Zucker, W. V., and Schulman, H. M. (1968) Stimulation of globin-chain initiation by hemin in the reticulocyte cell-free system. Proc. Natl. Acad. Sci. USA 59, 582–589.PubMedCrossRefGoogle Scholar
  7. 7.
    Farrell, P. J., Balkow, K., Hunt, T., Jackson, R. J., and Trachsel, H. (1977) Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 11, 187–200.PubMedCrossRefGoogle Scholar
  8. 8.
    Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117.PubMedCrossRefGoogle Scholar
  9. 9.
    Dalman, F. C., Bresnick, E. H., Patel, P. D., Perdew, G. H., Watson, S. J., Jr., and Pratt, W. B. (1989) Direct evidence that the glucocorticoid receptor binds to hsp90 at or near the termination of receptor translation in vitro. J. Biol. Chem. 264, 19815–19821.PubMedGoogle Scholar
  10. 10.
    Xiong, X., Chong, E., and Skach, W. R. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2616–2624.PubMedCrossRefGoogle Scholar
  11. 11.
    Carroll, R., and Lucas-Lenard, J. (1993) Preparation of a cell-free translation system with minimal loss of initiation factor eIF-2/eIF-2B activity. Anal. Biochem. 212, 17–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Zeenko, V. V., Wang, C., Majumder, M., Komar, A. A., Snider, M. D., Merrick, W. C., et al. (2008) An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation. RNA 14, 593–602.PubMedCrossRefGoogle Scholar
  13. 13.
    Hartl, F. U., and Hayer-Hartl, M. (2009) Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581.PubMedCrossRefGoogle Scholar
  14. 14.
    Balch, W. E., Morimoto, R. I., Dillin, A., and Kelly, J. W. (2008) Adapting proteostasis for disease intervention. Science 319, 916–919.PubMedCrossRefGoogle Scholar
  15. 15.
    Hutt, D. M., Powers, E. T., and Balch, W. E. (2009) The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett. 583, 2639–2646.PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson, R. J., and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Walter, P., and Blobel, G. (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Michel, Y. M., Poncet, D., Piron, M., Kean, K. M., and Borman, A. M. (2000) Cap-poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J. Biol. Chem. 275, 32268–32276.PubMedCrossRefGoogle Scholar
  19. 19.
    Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.PubMedCrossRefGoogle Scholar
  20. 20.
    Jagus, R. (1987) Translation in cell-free systems. Methods Enzymol. 152, 267–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Xiong, X., Bragin, A., Widdicombe, J. H., Cohn, J., and Skach, W. R. (1997) Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 100, 1079–1088.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu, Y., Xiong, X., Helm, A., Kimani, K., Bragin, A., and Skach, W. R. (1998) Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J. Biol. Chem. 273, 568–576.PubMedCrossRefGoogle Scholar
  23. 23.
    Carveth, K., Buck, T., Anthony, V., and Skach, W. R. (2002) Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J. Biol. Chem. 277, 39507–39514.PubMedCrossRefGoogle Scholar
  24. 24.
    Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176.PubMedCrossRefGoogle Scholar
  25. 25.
    Gruenert, D. C., Willems, M., Cassiman, J. J., and Frizzell, R. A. (2004) Established cell lines used in cystic fibrosis research. J. Cyst. Fibros. 3, 191–196.PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson, R. J., Campbell, E. A., Herbert, P., and Hunt, T. (1983) The preparation and properties of gel-filtered rabbit-reticulocyte lysate protein-synthesis systems. Eur. J. Biochem. 131, 289–301.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaderbhai, M. A., Harding, V. J., Karim, A., Austen, B. M., and Kaderbhai, N. N. (1995) Sheep pancreatic microsomes as an alternative to the dog source for studying protein translocation. Biochem. J. 306, 57–61.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yoshihiro Matsumura
    • 1
  • LeeAnn Rooney
    • 1
  • William R. Skach
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyOregon Health and Science UniversityPortlandUSA

Personalised recommendations