Genomic Approaches to Studying CFTR Transcriptional Regulation

  • Christopher J. OttEmail author
  • Ann Harris
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


The CFTR gene was identified over 20 years ago, and yet how the gene is transcriptionally regulated is not fully understood. Completion of the human genome sequence has encouraged a new generation of genomic techniques that can be used to identify and characterize the regulatory elements of the genome, which are often hidden in non-coding regions. In this chapter we describe two techniques that we have used to identify regulatory regions of the CFTR locus: DNase-chip, which utilizes DNase I-digested chromatin hybridized to tiled microarrays in order to locate regions of the CFTR locus that are “open” and thus likely regions of transcription factor binding; and quantitative chromosome conformation capture (q3C), which uses quantitative PCR analysis of digested and ligated, crosslinked chromosomes to measure physical interactions between distal genomic regions. When used together, these methods provide a powerful avenue to discover transcriptional regulatory elements within large genomic regions.

Key words

CFTR DNase-chip chromosome conformation capture enhancers regulatory elements 



We would like to thank Dr. Neil Blackledge (Department of Biochemistry, Oxford University) for generating data shown in Fig. 13.3b and Dr. Greg Crawford (Institute for Genome Sciences & Policy, Duke University) for assistance with the DNase-chip technique.


  1. 1.
    Harris, A., Chalkley, G., Goodman, S., and Coleman, L. (1991) Expression of the cystic fibrosis gene in human development. Development 113, 305–310.PubMedGoogle Scholar
  2. 2.
    Crawford, I., Maloney, P. C., Zeitlin, P. L., Guggino, W. B., Hyde, S. C., Turley, H., et al. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc. Natl. Acad. Sci. USA 88, 9262–9266.PubMedCrossRefGoogle Scholar
  3. 3.
    Engelhardt, J. F., Zepeda, M., Cohn, J. A., Yankaskas, J. R., and Wilson, J. M. (1994) Expression of the cystic fibrosis gene in adult human lung. J. Clin. Invest. 93, 737–749.PubMedCrossRefGoogle Scholar
  4. 4.
    Kreda, S. M., Mall, M., Mengos, A., Rochelle, L., Yankaskas, J., Riordan, J. R., et al. (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol. Biol. Cell 16, 2154–2167.PubMedCrossRefGoogle Scholar
  5. 5.
    Strong, T. V., Boehm, K., and Collins, F. S. (1994) Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J. Clin. Invest. 93, 347–354.PubMedCrossRefGoogle Scholar
  6. 6.
    Chou, J. L., Rozmahel, R., and Tsui, L. C. (1991) Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J. Biol. Chem. 266, 24471–24476.PubMedGoogle Scholar
  7. 7.
    Koh, J., Sferra, T. J., and Collins, F. S. (1993) Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J. Biol. Chem. 268, 15912–15921.PubMedGoogle Scholar
  8. 8.
    Yoshimura, K., Nakamura, H., Trapnell, B. C., Dalemans, W., Pavirani, A., Lecocq, J. P., et al. (1991) The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J. Biol. Chem. 266, 9140–9144.PubMedGoogle Scholar
  9. 9.
    Nuthall, H. N., Moulin, D. S., Huxley, C., and Harris, A. (1999) Analysis of DNase-I-hypersensitive sites at the 3 end of the cystic fibrosis transmembrane conductance regulator gene (CFTR). Biochem. J. 341, 601–611.PubMedCrossRefGoogle Scholar
  10. 10.
    Phylactides, M., Rowntree, R., Nuthall, H., Ussery, D., Wheeler, A., and Harris, A. (2002) Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene. Eur. J. Biochem. 269, 553–559.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, A. N., Barth, M. L., McDowell, T. L., Moulin, D. S., Nuthall, H. N., Hollingsworth, M. A., et al. (1996) A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J. Biol. Chem. 271, 9947–9954.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, D. J., Nuthall, H. N., Majetti, M. E., and Harris, A. (2000) Multiple potential intragenic regulatory elements in the CFTR gene. Genomics 64, 90–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Crawford, G. E., Davis, S., Scacheri, P. C., Renaud, G., Halawi, M. J., Erdos, M. R., et al. (2006) DNase-chip: A high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat. Methods 3, 503–509.PubMedCrossRefGoogle Scholar
  14. 14.
    Ott, C. J., Blackledge, N. P., Kerschner, J. L., Leir, S. H., Crawford, G. E., Cotton, C. U., et al. (2009) Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. Proc. Natl. Acad. Sci. USA 106, 19934–19939.PubMedGoogle Scholar
  15. 15.
    Hagège, H., Klous, P., Braem, C., Splinter, E., Dekker, J., Cathala, G., et al. (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733.PubMedCrossRefGoogle Scholar
  16. 16.
    Kotzamanis, G., Abdulrazzak, H., Gifford-Garner, J., Haussecker, P. L., Cheung, W., Grillot-Courvalin, C., et al. (2008) CFTR expression from a BAC carrying the complete human gene and associated regulatory elements. J. Cell. Mol. Med. 13, 2938–2948.PubMedCrossRefGoogle Scholar
  17. 17.
    Mouchel, N., Henstra, S. A., McCarthy, V. A., Williams, S. H., Phylactides, M., and Harris, A. (2004) HNF1alpha is involved in tissue-specific regulation of CFTR gene expression. Biochem. J. 378, 909–918.PubMedCrossRefGoogle Scholar
  18. 18.
    Scacheri, P. C., Crawford, G. E., and Davis, S. (2006) Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol. 411, 270–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G., and Higgs, D. R. (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041–2051.PubMedCrossRefGoogle Scholar
  20. 20.
    Blackledge, N. P., Ott, C. J., Gillen, A. E., and Harris, A. (2009) An insulator element 3 to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells. Nucleic Acids Res. 37, 1086–1094.PubMedCrossRefGoogle Scholar
  21. 21.
    Ott, C. J., Suszko, M., Blackledge, N. P., Wright, J. E., Crawford, G. E., and Harris, A. (2009) A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J. Cell. Mol. Med. 13, 680–692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Human Molecular Genetics ProgramChildren’s Memorial Research Center, Northwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations