Introduction to Section I: The Relevance of CF Diagnostic Tools for Measuring Restoration of CFTR Function After Therapeutic Interventions in Human Clinical Trials

  • Kris De BoeckEmail author
  • Melissa AshlockEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 741)


The pilocarpine sweat test, and in vivo assessment of CFTR function via nasal potential difference or intestinal current measurement are important tools to confirm the diagnosis of CF in subjects with suggestive symptoms. Since these tests reflect CFTR function and thus relate to the basic disease process in CF, changes in these parameters are also being used to assess the pharmacologic effect of compounds aimed at restoring CFTR function. However, longitudinal data proving that changes in these measurements are associated with meaningful clinical improvements in the course of disease in CF patients are needed. Consequently, many CF clinical investigators need to be facile with these existing methods to measure CFTR-related outcomes. This introduction sets the stage for more in-depth discussion of existing strategies to measure changes in CFTR function generated by gene therapy or small molecule modulators of CFTR function such as correctors and potentiators. It is hoped that lessons learned through the use of these measures will inform the future development of other robust methods to assess novel therapeutic strategies uncovered by basic scientists.

Key words

Cystic fibrosis diagnostic tests outcome parameters new therapies 


  1. 1.
    WHO (2004) The molecular genetic epidemiology of cystic fibrosis. Report of a joint meeting of WHO/ECFTN/ICF(M)A/ECFS and WHO Geneva, Human Genetics Programme WHO/HGN/CF/WG/04.02.
  2. 2.
    Buzzetti, R., Salvatore, D., Baldo, E., Forneris, M. P., Lucidi, V., Manunza, D., et al. (2009) An overview of international literature from cystic fibrosis registries: 1. Mortality and survival studies in cystic fibrosis. J. Cyst. Fibros. 8, 229–237.PubMedCrossRefGoogle Scholar
  3. 3.
    CFF (2007) CFF patient Registry annual data report 2007. Available from:
  4. 4.
    Dodge, J. A., Lewis, P.A., Stanton, M., and Wilsher, J., (2007) Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur. Respir. J. 29, 522–526.PubMedCrossRefGoogle Scholar
  5. 5.
    ECFS. (2009) European Registry for Cystic Fibrosis, Report 2006.
  6. 6.
    Lebecque, P., Leal, T., De Boeck, C., Jaspers, M., Cuppens, H., and Cassiman, J. J. (2002) Mutations of the cystic fibrosis gene and intermediate sweat chloride levels in children. Am. J. Resp. Crit. Care Med. 165, 757–761.PubMedGoogle Scholar
  7. 7.
    De Boeck, K., Wilschanski, M., Castellani, C., Taylor, C., Cuppens, H., Dodge, J., et al. (2006) Cystic fibrosis: Terminology and diagnostic algorithms. Thorax 61, 627–635.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenstein, B. J., and Cutting, G. R. (1998) The diagnosis of cystic fibrosis: A consensus statement. Cystic fibrosis foundation consensus panel. J. Pediatr. 132, 589–595.PubMedCrossRefGoogle Scholar
  9. 9.
    Henry, R. L., Mellis, C. M., and Petrovic, L. (1992) Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr. Pulmonol. 12, 158–161.PubMedCrossRefGoogle Scholar
  10. 10.
    Ashlock, M. A., Beall, R. J., Hamblett, N. M., Konstan, M. W., Penland, C. M., Ramsey, B. W., et al. (2009) A pipeline of therapies for cystic fibrosis. Semin. Respir. Crit. Care Med. 30, 611–626.PubMedCrossRefGoogle Scholar
  11. 11.
    Frederiksen, B., Koch, C., and Hoiby, N. (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 23, 330–335.PubMedCrossRefGoogle Scholar
  12. 12.
    Proesmans, M., Balinska-Miskiewicz, W., Dupont, L., Bossuyt, X., Verhaegen, J., Høiby, N., et al. (2006) Evaluating the “Leeds criteria” for Pseudomonas aeruginosa infection in a cystic fibrosis centre. Eur. Respir. J. 27, 937–943.PubMedGoogle Scholar
  13. 13.
    Borowitz, D., Durie, P. R., Clarke, L. L., Werlin, S. L, Taylor, C. J., Semler, J., et al. (2005) Gastrointestinal outcomes and confounders in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 41, 273–285.PubMedCrossRefGoogle Scholar
  14. 14.
    Colombo, C. (2007) Liver disease in cystic fibrosis. Curr. Opin. Pulm. Med. 13, 529–536.PubMedCrossRefGoogle Scholar
  15. 15.
    Quinton, P. M. (2007) Cystic fibrosis: Lessons from the sweat gland. Physiology (Bethesda) 22, 212–225.CrossRefGoogle Scholar
  16. 16.
    Farrell, P. M., Rosenstein, B. J., White, T. B., Accurso, F. J., Castellani, C., Cutting, G. R., et al. (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic fibrosis foundation consensus report. J. Pediatr. 153, S4–S14.PubMedCrossRefGoogle Scholar
  17. 17.
    Bush, A. (2008) Editorial overview: Newborn screening for cystic fibrosis – Benefit or bane? Paediatr. Resp. Rev. 9, 301–302.CrossRefGoogle Scholar
  18. 18.
    LeGrys, V. A., Yankaskas, J. R., Quittell, L. M., Marshall, B. C., and Mogayzel, P. J. Jr. (2007) Diagnostic sweat testing: The Cystic Fibrosis Foundation guidelines. J. Pediatr. 151, 85–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Collins, F. S. (1992) Cystic fibrosis: Molecular biology and therapeutic implications. Science 256, 774–779.PubMedCrossRefGoogle Scholar
  20. 20.
    Goubau, C., Wilschanski, M., Skalicka, V., Lebecque, P., Southern, K. W., Sermet, I., et al. (2009) Phenotypic characterisation of patients with intermediate sweat chloride values: Towards validation of the European diagnostic algorithm for cystic fibrosis. Thorax 64, 683–691.PubMedCrossRefGoogle Scholar
  21. 21.
    Knowles, M. R., Paradiso, A. M., and Boucher, R. C. (1995) In vivo nasal potential difference: Techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 6, 445–455.PubMedCrossRefGoogle Scholar
  22. 22.
    Middleton, P. G., Geddes, D. M., and Alton, E.W. (1994) Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur. Respir. J. 7, 2050–2056.PubMedCrossRefGoogle Scholar
  23. 23.
    De Boeck, C., Derichs, N., Fajac, I., et al. (2011) New clinical diagnostic procedures for cystic fibrosis in Europe.  J. Cyst. Fibros. 10 Suppl 1, S53–S66.Google Scholar
  24. 24.
    Rowe, S. M., Accurso, F., and Clancy, J. P. (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc. Am. Thorac. Soc. 4, 387–398.PubMedCrossRefGoogle Scholar
  25. 25.
    Highsmith, W. E., Burch, L. H., Zhou, Z., et al. (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N. Engl. J. Med. 331, 974–980.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilschanski, M., Dupuis, A., Ellis, L., Jarvi, K., Zielenski, J., Tullis E., et al. (2006) Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am. J. Respir. Crit. Care Med. 174, 787–794.PubMedCrossRefGoogle Scholar
  27. 27.
    Corey, M., Edwards, L., Levison, H., and Knowles, M. (1997) Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis. J. Pediatr. 131, 809–814.PubMedCrossRefGoogle Scholar
  28. 28.
    Morgan, R. M., Patterson, M. J., and Nimmo, M.A. (2004) Acute effects of dehydration on sweat composition in men during prolonged exercise in the heat. Acta Physiol. Scand. 182, 37–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Yilmaz, K., Tatli, B., Yaramis, A., Aydinli, N., Caliskan, M., and Ozmen, M. (2005) Symptomatic and asymptomatic hypohidrosis in children under topiramate treatment. Turk. J. Pediatr. 47, 359–363.PubMedGoogle Scholar
  30. 30.
    Wilschanski, M., Famini, H., Strauss-Liviatan, N., Rivlin, J., Blau, H., Bibi, H., et al. (2001) Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur. Respir. J. 17, 1208–1215.PubMedCrossRefGoogle Scholar
  31. 31.
    Griesenbach, U., and Boyd, A. C. (2005) Pre-clinical and clinical endpoint assays for cystic fibrosis gene therapy. J. Cyst. Fibros. 4, 89–100.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosenfeld, M. (2007) An overview of endpoints for cystic fibrosis clinical trials: One size does not fit all. Proc. Am. Thorac. Soc. 4, 299–301.PubMedCrossRefGoogle Scholar
  33. 33.
    Kerem, E., Hirawat, S., Armoni, S., Yaakov, Y., Shoseyov, D., Cohen, M., et al. (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: A prospective phase II trial. Lancet 372, 719–727.PubMedCrossRefGoogle Scholar
  34. 34.
    Sermet-Gaudelus, I., Boeck, K. D., Casimir, G. J., et al. (2010) Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med. 182, 1262–1272.PubMedCrossRefGoogle Scholar
  35. 35.
    Accurso, F. J., Rowe, S. M., Clancy, J. P., et al. (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation.  N. Engl. J. Med. 363, 1991–2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Ashlock, M., and Olson, E. R. (2011) Therapeutics development for cystic fibrosis: a successful model for a multisystemic genetic disease.  Annu. Rev. Med. 62, 107–125.Google Scholar
  37. 37.
    De Boeck, C., Bulteel, V., Tiddens, H., et al. (2011) Guideline on the design and conduct of CF clinical trials: the ECFS Clinical Trials Network (ECFS-CTN). J. Cyst. Fibros. 10 Suppl 1, S67–S74.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of LeuvenLeuvenBelgium
  2. 2.Cystic Fibrosis Foundation TherapeuticsBethesdaUSA

Personalised recommendations