Skip to main content

Measurement Methods in Atomic Force Microscopy

  • Protocol
  • First Online:
Atomic Force Microscopy in Biomedical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 736))

Abstract

This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Israelachvili, J. N. (1985) Intermolecular and Surface Forces. Academic Press, London.

    Google Scholar 

  2. Weisenhorn A. L., Maivald, P., Butt, H. J., and Hansma, P. K. (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B. 45, 11,226–11,232.

    Google Scholar 

  3. Weisenhorn A.L., Hansma, P. K., Albrecht T. R., and Quate, C. F. (1989) Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 2651–2653.

    Google Scholar 

  4. Butt, H.-J., Siedle, P., Seifert, K., et al. (1993) Scan speed limit in atomic force microscopy. J. Microsc. 169, 75–84.

    Google Scholar 

  5. Putman, C. A., van der Werf, K. O., de Grooth, B. G., van Hulst, N. F., and Greve, J. (1992) New imaging mode in atomic-force microscopy based on the error signal. SPIE Proceedings 1639, 198–204.

    Google Scholar 

  6. Gibson, C. T., Watson, G. S., and Myhra, S. (1997) Lateral force microscopy–a quantitative approach. Wear 213, 72–79.

    Google Scholar 

  7. Han, W. and Lindsay, S. M. (1998) Precision interfacial molecular force measurements with a MAC mode atomic force microscope. Appl. Phys. Lett. 72, 1656–1658.

    Google Scholar 

  8. Han, W., Lindsay, S. M., and Jing, T. (1996) A magnetically-driven oscillating probe microscope for operation in liquids. Appl. Phys. Lett. 69, 4111–4113.

    Google Scholar 

  9. Garcia, R. and San Paulo, A. (2000) Amplitude curves and operating regimes in dynamic atomic force microscopy. Ultramicroscopy 82, 79–83.

    Google Scholar 

  10. Hansma, P. K., Cleveland, J. P., Radmacher, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.

    Google Scholar 

  11. Lantz, M., Liu, Y. Z., Cui, X. D., Tokumoto, H., and Lindsay, S. M. (1999) Dynamic force microscopy in fluid. Surface Interface Anal. 27, 354–360.

    Google Scholar 

  12. Tamayo, J., Humphris, A. D., Owen, R. J., and Miles, M. J. (2001) High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 81, 526–537.

    Google Scholar 

  13. Burnham, N. A., Behrend, O. P., Oulevey, F., et al. (1997) How does a tip tap? Nano­technology 8, 67–75.

    Google Scholar 

  14. Behrend, O. P., Oulevey, F., Gourdon, D., et al. (1998) Intermittent contact: Tapping or hammering? Appl. Phys. A66, S219–S221.

    Google Scholar 

  15. Magonov, S. N., Elings, V., and Whangbo, M.-H. (1997) Phase imaging and stiffness in tapping mode AFM. Surface Sci. 375, L385–L391.

    Google Scholar 

  16. Bar, G., Delineau, L., Brandsch, R., Bruch, M., and Whangbo, M.-H. (1999) Importance of the indentation depth in tapping-mode atomic force microscopy study of compliant materials. Appl. Phys. Lett. 75, 4198–4200.

    Google Scholar 

  17. Bar, G. and Brandsch, R. (1998) Effect of viscoelastic properties of polymers on the phase shift in tapping mode atomic force microscopy. Langmuir. 14, 7343–7347.

    Google Scholar 

  18. Cleveland, J. P., Anczykowski, B., Schmid, A. E., and Elings, V. B. (1998) Energy dissipation in tappingmode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615.

    Google Scholar 

  19. Chen, X., Davies, M. C., Roberts, C. J., Tendler, S. J. B., and Williams, P. M. (2000) Optimizing phase imaging via dynamic force curves. Surface Sci 460, 292–300.

    Google Scholar 

  20. Pang, G. K., Baba-Kishi, K. Z., and Patel, A. (2000) Topographic and phase-contrast imaging in atomic force microscopy. Ultramicroscopy 81(2), 35–40.

    Google Scholar 

  21. Butt, H-J. (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444.

    Google Scholar 

  22. Vinckier, A. and Semenza, G. (1998) Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430, 12–16.

    Google Scholar 

  23. Hutter Jeffrey L. and John Bechhoefer (1994) Measurement and manipulation of Van der Waals forces in atomic force microscopy. J. Vacuum Sci. Technol. B, 12, 2251–2253.

    Google Scholar 

  24. Cleveland, J. P., Manne, S., Bocek, D., and Hansma, P. K. (1993) A non-destructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–405.

    Google Scholar 

  25. D’Costa, N. P. and Hoh, J. H. (1995) Calibration of optical lever sensitivity for atomic force microscopy. Rev. Sci. Instrum. 66, 5096–5097.

    Google Scholar 

  26. Hoh, I., Cleveland, J. P., Prater, C. B., Revel, J.-P., and Hansma, P. K. (1992) Quantized adhesion detected with the atomic force microscope. J. Am. Chem. Soc. 4917–4918.

    Google Scholar 

  27. Mckendry, R. A., Theoclitou, M., Rayment, T., and Abell, C. (1998) Chiral discrimination by chemical force microscopy. Nature 14, 2846–2849.

    Google Scholar 

  28. Okabe, Y., Furugori, M., Tani, Y., Akiba, U., and Fujihira, M. (2000) Chemical force microscopy of microcontact-printed self-assembled monolayers by pulsedforce-mode atomic force microscopy. Ultramicroscopy 82, 203–212.

    Google Scholar 

  29. Willemsen, O. H., Snel, M. M., van Noort, S. J., et al. (1999) Optimization of adhesion mode atomic force microscopy resolves individual molecules in topography and adhesion. Ultramicroscopy 80, 133–144.

    Google Scholar 

  30. Thundat, T., Oden, P. I., and Warmack, R. J. (1997) Chemical, physical, and biological detection using microcantilevers. Electrochem. Society Proc. 97, 179–187.

    Google Scholar 

  31. F.J. Giessibl.1997.Forces and frequency shifts in atomic-resolution dynamic force microscopy” Phys. Rev. B 56: 16010–16015.

    Google Scholar 

  32. Holscher H, Schwarz U D, Zworner O and Wiesendanger R.1998.Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys. Rev. B 57: 2477–81.

    Google Scholar 

  33. Butt HJ, Cappella B and Kappl M. 2005. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59:1–152.

    Article  CAS  Google Scholar 

  34. Magonov S N, Elings V and Papkov V S. 1997. AFM study of thermotropic structural transitions in poly(diethylsiloxane). Polymer 38: 297–307.

    Article  CAS  Google Scholar 

  35. Durig U. 2000. Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl. Phys. Lett. 76:1203–1205.

    Article  CAS  Google Scholar 

  36. Sader J E and Jarvis S P.2004. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84:1801–1803.

    Article  CAS  Google Scholar 

  37. Sader J E, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y and Jarvis S P. 2005. Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations. Nanotechnology 16:S94–S101.

    Article  CAS  Google Scholar 

  38. Durig U. 1999. Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl. Phys. Lett. 75:433–435.

    Article  CAS  Google Scholar 

  39. F Jamitzky, M Stark, W Bunk, WM Heckl and R W Stark, 2006. Chaos in dynamic atomic force microscopy.Nanotechnology 17: S213–S220.

    Google Scholar 

  40. W. N. Unertl “Implications of contact mechanics models for mechanical properties measurements using scanning force microscopy”, J. Vac. Sci. Technol. A 17, 1779 (Jul/Aug 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ricci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Torre, B., Canale, C., Ricci, D., Braga, P.C. (2011). Measurement Methods in Atomic Force Microscopy. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics