Skip to main content

Naturally Occurring Minichromosome Platforms in Chromosome Engineering: An Overview

  • Protocol
  • First Online:
Mammalian Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 738))

Abstract

Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, A. W., Szostak, J. W. (1983) Construction of artificial chromosomes in yeast Nature 305, 189–93.

    CAS  Google Scholar 

  2. Clarke, L., Carbon, J. (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes Nature 287, 504–9.

    CAS  Google Scholar 

  3. Clarke, L., Amstutz, H., Fishel, B., Carbon, J. (1986) Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe Proc Natl Acad Sci USA 83, 8253–7.

    CAS  Google Scholar 

  4. Carbon, J., Clarke, L. (1990) Centromere structure and function in budding and fission yeasts New Biol 2, 10–9.

    CAS  Google Scholar 

  5. Clarke, L. (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 8, 212–8.

    Article  PubMed  CAS  Google Scholar 

  6. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G., Earnshaw, W. C. (1995) The centromere: hub of chromosomal activities Science 270, 1591–4.

    CAS  Google Scholar 

  7. Allshire, R. C. (1997) Centromeres, checkpoints and chromatid cohesion Curr Opin Genet Dev 7, 264–73.

    Google Scholar 

  8. Henikoff, S., Ahmad, K., Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA Science 293, 1098–102.

    CAS  Google Scholar 

  9. Allshire, R. C., Karpen, G. H. (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9, 923–37.

    Article  PubMed  CAS  Google Scholar 

  10. Marshall, O. J., Chueh, A. C., Wong, L. H., Choo, K. H. (2008) Neo-centromeres: new insights into centromere structure, disease development, and karyotype evolution Am J Hum Genet 82, 261–82.

    Google Scholar 

  11. Vagnarelli, P., Ribeiro, S. A., Earnshaw, W. C. (2008) Centromeres: old tales and new tools FEBS Lett 582, 1950–9.

    CAS  Google Scholar 

  12. John, B. (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin: molecular and structural aspects. Cambridge University Press, Cambridge, pp 1–128.

    Google Scholar 

  13. Maison, C., Bailly, D., Peters, A. H., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T., Almouzni, G. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component Nat Genet 30, 329–34.

    Google Scholar 

  14. Muchardt, C., Guilleme, M., Seeler, J. S., Trouche, D., Dejean, A., Yaniv, M. (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha EMBO Rep 3, 975–81.

    Google Scholar 

  15. Eymery, A., Callanan, M., Vourc’h, C. (2009) The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription Int J Dev Biol 53, 259–68.

    CAS  Google Scholar 

  16. Dimitri, P., Caizzi, R., Giordano, E., Accardo, M. C., Lattanzi, G., Biamonti, G. (2009) Constitutive heterochromatin: a surprising variety of expressed sequences Chromosoma 118, 419–35.

    CAS  Google Scholar 

  17. Jolly, P. D., Smith, P. R., Heath, D. A., Hudson, N. L., Lun, S., Still, L. A., Watts, C. H., McNatty, K. P. (1997) Morphological evidence of apoptosis and the prevalence of apoptotic versus mitotic cells in the membrana granulosa of ovarian follicles during spontaneous and induced atresia in ewes Biol Reprod 56, 837–46.

    CAS  Google Scholar 

  18. Denegri, M., Moralli, D., Rocchi, M., Biggiogera, M., Raimondi, E., Cobianchi, F., De Carli, L., Riva, S., Biamonti, G. (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies Mol Biol Cell 13, 2069–79.

    Google Scholar 

  19. Kloc, A., Martienssen, R. (2008) RNAi, heterochromatin and the cell cycle Trends Genet 24, 511–7.

    Google Scholar 

  20. Saffery, R., Wong, L. H., Irvine, D. V., Bateman, M. A., Griffiths, B., Cutts, S. M., Cancilla, M. R., Cendron, A. C., Stafford, A. J., Choo, K. H. (2001) Construction of neo-centromere-based human minichromosomes by telomere-associated chromosomal truncation Proc Natl Acad Sci USA 98, 5705–10.

    CAS  Google Scholar 

  21. Wong, L. H., Saffery, R., Choo, K. H. (2002) Construction of neo-centromere-based human minichromosomes for gene delivery and centromere studies Gene Ther 9, 724–6.

    CAS  Google Scholar 

  22. Voullaire, L. E., Slater, H. R., Petrovic, V., Choo, K. H. (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52, 1153–63.

    PubMed  CAS  Google Scholar 

  23. Wade, C. M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T. L., Adelson, D. L., Bailey, E., Bellone, R. R., Blöcker, H., Distl, O., Edgar, R. C., Garber, M., Leeb, T., Mauceli, E., MacLeod, J. N., Penedo, M. C., Raison, J. M., Sharpe, T., Vogel, J., Andersson, L., Antczak, D. F., Biagi, T., Binns, M. M., Chowdhary, B. P., Coleman, S. J., Della Valle, G., Fryc, S., Guérin, G., Hasegawa, T., Hill, E. W., Jurka, J., Kiialainen, A., Lindgren, G., Liu, J., Magnani, E., Mickelson, J. R., Murray. J., Nergadze, S. G., Onofrio, R., Pedroni, S., Piras, M. F., Raudsepp, T., Rocchi, M., Røed, K. H., Ryder, O. A., Searle, S., Skow, L., Swinburne, J. E., Syvänen, A. C., Tozaki, T, Valberg, S. J., Vaudin, M., White, J. R., Zody, M. C.; Broad Institute Genome Sequencing Platform; Broad Institute Whole Genome Assembly Team, Lander, E. S., Lindblad-Toh, K. (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse Science 326, 865–7.

    Google Scholar 

  24. Piras, M. F., Nergadze, S. G., Magnani, E., Bertoni, L., Attolini, C., Khoriauli, L., Raimondi, E., Giulotto, E. (2010) Uncoupling of satellite DNA and centromeric function in the genus Equus Cytogenet Genome Res PLOS Genet, 6, 1000–845.

    Google Scholar 

  25. Carbone, L., Nergadze, S. G., Magnani, E., Misceo, D., Cardone, F. M, Roberto, R., Bertoni, L., Attolini, C., Piras, F. M., de Jong, P., Raudsepp, T., Chowdhary, B. P., Guérin, G., Archidiacono, N., Rocchi, M., Giulotto, E. (2006) Evolutionary movement of centromeres in horse, donkey, and zebra Genomics 87, 777–82.

    Google Scholar 

  26. Camacho, J. P. M. (ed.) (2004) B Chromosomes in the Eukaryote Genome Special issue of Cytogenet Genome Res. 106, nos. 2–4.

    Google Scholar 

  27. Raimondi, E., Balzaretti, M., Moralli, D., Vagnarelli, P., Tredici, F., Bensi, M., De Carli, L. (1996) Gene targeting to the centromeric DNA of a human minichromosome Hum Gene Ther 7, 1103–9.

    CAS  Google Scholar 

  28. Guiducci, C., Ascenzioni, F., Auriche, C., Piccolella, E., Guerrini, A. M., Donini, P. (1999) Use of a human minichromosome as a cloning and expression vector for mammalian cells Hum Mol Genet 8, 1417–24.

    CAS  Google Scholar 

  29. Moralli, D., Vagnarelli, P., Bensi, M., De Carli, L., Raimondi, E. (2001) Insertion of a loxP site in a size-reduced human accessory chromosome Cytogenet Cell Genet 94, 113–20.

    CAS  Google Scholar 

  30. Crolla, J. A. (1998) FISH and molecular studies of autosomal supernumerary marker chromosomes excluding those derived from chromosome 15: II. Review of the literature Am J Med Genet 75, 367–81.

    Article  CAS  Google Scholar 

  31. Liehr, T., Claussen, U., Starke, H. (2004) Small supernumerary marker chromosomes (sSMC) in humans Cytogenet Genome Res 107, 55–67.

    Google Scholar 

  32. Liehr, T., Ewers, E., Kosyakova, N., Klaschka, V., Rietz, F., Wagner, R., Weise, A. (2009) Handling small supernumerary marker chromosomes in prenatal diagnostics Expert Rev Mol Diagn 9, 317–24.

    Google Scholar 

  33. Walter, M. A., Goodfellow, P. N. (1993) Radiation hybrids: irradiation and fusion gene transfer Trends Genet 9, 352–6.

    CAS  Google Scholar 

  34. Farr, C. J., Bayne, R. A., Kipling, D., Mills, W., Critcher, R., Cooke, H. J. (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation EMBO J 14, 5444–54.

    CAS  Google Scholar 

  35. Heller, R., Brown, K. E., Burgtorf, C., Brown, W. R. (1996) Minichromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc Natl Acad Sci USA 93, 7125–30.

    CAS  Google Scholar 

  36. Mills, W., Critcher, R., Lee, C., Farr, C. J. (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40 Hum Mol Genet 8, 751–761.

    Google Scholar 

  37. Katoh, M., Ayabe, F., Norikane, S., Okada, T., Masumoto, H., Horike, S., Shirayoshi, Y., Oshimura, M. (2004) Construction of a novel human artificial chromosome vector for gene delivery Biochem Biophys Res Commun 321, 280–90.

    CAS  Google Scholar 

  38. Lee, S. C., Wang, W., Liu, P. (2009) Construction of gene-targeting vectors by recombineering Methods Mol Biol 530, 15–27.

    CAS  Google Scholar 

  39. Niwa, O., Matsumoto, T., Chikashige, Y., Yanagida, M. (1989) Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere EMBO J 8, 3045–52.

    CAS  Google Scholar 

  40. Murphy, T. D., Karpen, G. H. (1995) Localization of centromere function in a Drosophila minichromosome Cell 82, 599–609.

    CAS  Google Scholar 

  41. Ferretti, L., Raimondi, E., Gamberi, C., Young, B. D., De Carli, L., Sgaramella V. (1991) Molecular cloning of DNA from a sorted human minichromosome Gene 99, 229–34.

    CAS  Google Scholar 

  42. Raimondi, E., Ferretti, L., Young, B. D., Sgaramella, V., De Carli, L. (1991) The origin of a morphologically unidentifiable human supernumerary minichromosome traced through sorting, molecular cloning, and in situ hybridisation J Med Genet 28, 92–6.

    Google Scholar 

  43. Yu, W., Han, F., Birchler, J. A. (2007) Engineered minichromosomes in plants Curr Opin Biotechnol 18, 425–31.

    CAS  Google Scholar 

  44. Yu, W., Lamb, J. C., Han, F., Birchler, J. A. (2006) Telomere-mediated chromosomal truncation in maize Proc Natl Acad Sci USA 103, 17331–6.

    Article  CAS  Google Scholar 

  45. Yu, W., Han, F., Gao, Z., Vega, J. M., Birchler, J. A. (2007) Construction and behaviour of engineered minichromosomes in maize Proc Natl Acad Sci USA 104, 8924–9.

    Article  CAS  Google Scholar 

  46. Fukushige, S., Sauer, B. (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells Proc Natl Acad Sci USA 89, 7905–9.

    CAS  Google Scholar 

  47. Baubonis, W., Sauer, B. (1993) Genomic targeting with purified Cre recombinase Nucleic Acids Res 21, 2025–29.

    CAS  Google Scholar 

  48. Kuroiwa, Y., Shinohara, T., Notsu, T., Tomizuka, K., Yoshida, H., Takeda, S., Oshimura, M., Ishida, I. (1998) Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells Nucleic Acids Res 26, 3447–8.

    Google Scholar 

  49. Kuroiwa, Y., Tomizuka, K., Shinohara, T., Kazuki, Y., Yoshida, H., Ohguma, A., Yamamoto, T., Tanaka, S., Oshimura, M., Ishida, I. (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts Nat Biotechnol 18, 1086–90.

    CAS  Google Scholar 

  50. Smith, A. J. H., de Sousa, M. A., Kwabi-Addo, B., Heppell-Parton, A., Impey, H., Rabbits. P. (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination Nature Genet 9, 376–85.

    Google Scholar 

  51. Van Deursen J, Fornerod M, Van Rees B & Grosveld G (1995) Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc Natl Acad Sci USA 92: 7376–7380.

    Article  PubMed  Google Scholar 

  52. Van der Weide, L., Bradley, A. (2006) Mouse Chromosome Engineering for Modeling Human Diseases Annu Rev Genomics Hum Genet 7, 247–76.

    Google Scholar 

  53. Hoshiya, H., Kazuki, Y., Abe, S., Takiguchi, M., Kajitani, N., Watanabe, Y., Yoshino, T., Shirayoshi, Y., Higaki, K., Messina, G., Cossu, G., Oshimura, M. (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene Mol Ther 17, 309–17.

    Google Scholar 

  54. Ikeno, M., Suzuki, N., Hasegawa, Y., Okazaki, T. (2009) Manipulating transgenes using a chromosome vector Nucleic Acids Res 37, e44.

    Google Scholar 

  55. Schor, S. L., Johnson, R. T., Mullinger, A. M. (1975) Perturbation of mammalian cell division. II. Studies on the isolation and characterization of human mini segregant cells J Cell Sci 19, 281–303.

    CAS  Google Scholar 

  56. Fournier, R. E., Ruddle, F. H. (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells Proc Natl Acad Sci USA 74, 319–23.

    Article  CAS  Google Scholar 

  57. Tomizuka, K., Yoshida, H., Uejima, H., Kugoh, H., Sato, K., Ohguma, A., Hayasaka, M., Hanaoka, K., Oshimura, M., Ishida, I. (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice Nat Genet 16, 133–43.

    CAS  Google Scholar 

  58. Paulis, M., Bensi, M., Orioli, D., Mondello, C., Mazzini, G., D’Incalci, M., Falcioni, C., Radaelli, E., Erba, E., Raimondi, E., De Carli, L. (2007) Transfer of a human chromosomal vector from a hamster cell line to a mouse embryonic stem cell line Stem Cells 25, 2543–50.

    CAS  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge Luca Ferretti (Dept. of Genet. and Microbiol., University of Pavia), Chiara Mondello (IGM, CNR Pavia) and Marianna Paulis (ITB, CNR Milano) for critical ­reading of the manuscript. Research in my lab is funded by Ministero dell’Università e della Ricerca (PRIN 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Raimondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Raimondi, E. (2011). Naturally Occurring Minichromosome Platforms in Chromosome Engineering: An Overview. In: Hadlaczky, G. (eds) Mammalian Chromosome Engineering. Methods in Molecular Biology, vol 738. Humana Press. https://doi.org/10.1007/978-1-61779-099-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-099-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-098-0

  • Online ISBN: 978-1-61779-099-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics