Skip to main content

Adeno-Associated Viruses

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

Adeno-associated virus (AAV) vectors have evolved over the past decade as a particularly useful gene ­vector for in vivo applications. In contrast to oncoretro- and lentiviral vectors, this vector stays essentially episomal after gene transfer, making it safer because of the absence of insertional mutagenesis. AAV’s non-pathogenicity is a further advantage. For decades, this vector could only be produced at a small scale for research purposes and, eventually, used at very small doses for clinical studies, because only transfection methods were available, which have limited scalability. However, since the development of scalable production methods, this bottleneck is resolved and, from a technical point of view, large quantities of AAV vectors can be produced, opening the possibility of using AAV vectors for whole body treatments in gene therapy trials. This chapter presents the basic principles of small- and large-scale production procedures as well as detailed procedure of small-scale production, purification, and analytical protocols for AAV vectors. In Chapter 10, the reader will find a large-scale production method based on the use of the insect cell/baculovirus system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berns, K. I. (1996) Parvoviridae: The virus and their replication. In: Fields BN, Knipe DM, Howley PM (eds). Fields in Virology. Lippincott – Raven, Philadelphia, pp. 2173–2197.

    Google Scholar 

  2. Rutledge, E.A., Halbert, C. L., and Russell, D. W. (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319.

    PubMed  CAS  Google Scholar 

  3. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene ­therapy. Proc. Natl. Acad. Sci. USA 99, 11854–11859.

    Article  PubMed  CAS  Google Scholar 

  4. Gao, G., Vandenberghe, L. H., Alvira, M. R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J. M. (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388.

    Article  PubMed  CAS  Google Scholar 

  5. Mori, S., Wang, L., Takeuchi, T., and Kanda, T. (2004) Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 330, 375–383.

    Article  PubMed  CAS  Google Scholar 

  6. Gao, G., Vandenberghe, L. H., and Wilson J. M. (2005) New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297.

    Article  PubMed  CAS  Google Scholar 

  7. Qiu, J. and Pintel, D. J. (2004) Alternative polyadenylation of adeno-associated virus type 5 RNA within an internal intron is governed by the distance between the promoter and the intron and is inhibited by U1 small nuclear RNP binding to the intervening donor. J. Biol. Chem. 279, 14889–14898.

    Article  PubMed  CAS  Google Scholar 

  8. Erles, K., Sebokova, P., and Schlehofer, J. R. (1999) Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J. Med. Virol. 59, 406–411.

    Article  PubMed  CAS  Google Scholar 

  9. Tobiasch, E., Burguete, T., Klein-Bauernschmitt, P., Heilbronn, R., and Schlehofer, J. R. (1998) Discrimination between different types of human adeno-associated viruses in clinical samples by PCR. J. Virol. Methods 71, 17–25.

    Article  PubMed  CAS  Google Scholar 

  10. Kotin, R. M., Siniscalco, M., Samulski, R. J., Zhu, X. D., Hunter, L., Laughlin, C. A., et al. (1990) Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87, 2211–2215.

    Article  PubMed  CAS  Google Scholar 

  11. Samulski, R. J., Zhu, X., Xiao, X., Brook, J. D., Housman, D. E., Epstein, N., et al. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. Embo J. 10, 3941–3950.

    PubMed  CAS  Google Scholar 

  12. Shelling, S. N. and Smith, M. G. (1994) Targeted integration of transfected and infected adeno-associated virus vectors containing the neomycin gene. Gene Ther. 1, 165–169.

    PubMed  CAS  Google Scholar 

  13. Samulski, R. J., Berns, K. I., Tan, M., and Muzyczka, N. (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl. Acad. Sci. USA 79, 2077–2081.

    Article  PubMed  CAS  Google Scholar 

  14. Samulski, R. J., Chang, L. S., and Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101.

    PubMed  CAS  Google Scholar 

  15. Tratschin, J. D., Miller, I. L., Smith, M. G., and Carter, B. J. (1985) Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol. Cell. Biol. 5, 3251–3260.

    PubMed  CAS  Google Scholar 

  16. Grimm, D. and Kay, M. A. (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 3, 281–304.

    Article  PubMed  CAS  Google Scholar 

  17. Grimm, D., Lee, J. S., Wang, L., Desai, T., Akache, B., Storm, T. A., et al. (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911.

    Article  PubMed  CAS  Google Scholar 

  18. Tratschin, J. D., Miller, I. L., and Carter, B. J. (1984) Genetic analysis of adeno-associated virus: properties of deletion mutants ­constructed in vitro and evidence for an adeno-associated virus replication function. J. Virol. 51, 611–619.

    PubMed  CAS  Google Scholar 

  19. Srivastava, A., Lusby, E. W., and Berns, K. I. (1983) Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45, 555–564.

    PubMed  CAS  Google Scholar 

  20. Weitzman, M. D., Kyostio, S. R., Kotin, R. M., and Owens, R. A. (1994) Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl. Acad. Sci. U S A 91, 5808–5812.

    Article  PubMed  CAS  Google Scholar 

  21. Horer, M., Weger, S., Butz, K., Hoppe-Seyler, F., Geisen, C., and Kleinschmidt, J. A. (1995) Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J. Virol. 69, 5485–5496.

    PubMed  CAS  Google Scholar 

  22. Pereira, D. J., McCarty, D. M., and Muzyczka, N. (1997) The adeno-associated virus (AAV) Rep protein acts as both a repressor and an ­activator to regulate AAV transcription ­during a productive infection. J. Virol. 71, 1079–1088.

    PubMed  CAS  Google Scholar 

  23. King, J. A., Dubielzig, R., Grimm, D., and Kleinschmidt, J. A. (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. Embo J. 20, 3282–3291.

    Article  PubMed  CAS  Google Scholar 

  24. Timpe, J., Bevington, J., Casper, J., Dignam, J. D., and Trempe, J. P. (2005) Mechanisms of adeno-associated virus genome encapsidation. Curr. Gene Ther. 5, 273–284.

    Article  PubMed  CAS  Google Scholar 

  25. Schlehofer, J. R., Ehrbar, M., zur Hausen, H. (1986) Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 152, 110–117.

    Article  PubMed  CAS  Google Scholar 

  26. Weindler, F. W. and Heilbronn, R. (1991) A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J. Virol. 65, 2476–2483.

    PubMed  CAS  Google Scholar 

  27. McPherson, R. A., Rosenthal, L. J., and Rose, J. A. (1985) Human cytomegalovirus completely helps adeno-associated virus replication. Virology 147, 217–222.

    Article  PubMed  CAS  Google Scholar 

  28. Ogsten, P., Raj, K., and Beard, P. (2000) Productive replication of adeno-associated virus can occur in human papillomavirus type 16 (HPV-16) episome-containing keratinocytes and is augmented by the HPV-16 E2 protein. J. Virol. 74, 3494–3504.

    Article  Google Scholar 

  29. Geoffroy, M.-C. and Salvetti, A. (2005) Helper functions required for wild type and recombinant adeno-associated virus growth. Curr. Gene Ther. 5, 265–271.

    Article  PubMed  CAS  Google Scholar 

  30. Wistuba, A., Kern, A., Weger, S., Grimm, D., and Kleinschmidt, J. A. (1997) Subcellular compartmentalization of adeno-associated virus type 2 assembly. J. Virol. 71, 1341–1352.

    PubMed  CAS  Google Scholar 

  31. Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9, 2745–2760.

    Article  PubMed  CAS  Google Scholar 

  32. Xiao, X., Li, J., and Samulski, R.J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2323.

    PubMed  CAS  Google Scholar 

  33. Chiorini, J. A., Yang, L., Liu, Y., Safer, B., and Kotin, R. M. (1997) Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 71, 6823–6833.

    PubMed  CAS  Google Scholar 

  34. Chiorini, J. A., Kim, F., Yang, L., and Kotin, R. M. (1999) Cloning and characterization of adeno-associated virus type 5. J. Virol. 73, 1309–1319.

    PubMed  CAS  Google Scholar 

  35. Xiao, W., Chirmule, N., Berta, S. C., McCullough, B., Gao, G., and Wilson, J. M. (1999) Gene ­therapy vectors based on ­adeno-associated virus type 1. J. Virol. 73, 3994–4003.

    PubMed  CAS  Google Scholar 

  36. Qu, G., McClelland, A., and Wright, J. F. (2000) Scaling-up production of recombinant AAV vectors for clinical applications. Curr. Opin. Drug Discov. Devel. 3, 750–755.

    PubMed  CAS  Google Scholar 

  37. Brown, P., Barrett, S., Godwin, S., Trudinger, M., Marschak, T., Norboe, D., et al. (1998) Optimization of production of adeno-associated virus (AAV) for use in gene therapy, Presented at: Cell Culture Engineering VI, San Diego/CA.

    Google Scholar 

  38. Clark, K. R. (2002) Recent advances in recombinant adeno-associated virus vector production. Kidney Int. 61, 9–15.

    Article  Google Scholar 

  39. Merten, O.-W., Gény, C., and Douar A. M. (2005) Current issues in adeno-associated viral vectors production. Gene Ther. 12, ­S51–S61.

    Article  PubMed  CAS  Google Scholar 

  40. Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943.

    Article  PubMed  CAS  Google Scholar 

  41. Urabe, M., Ozawa, K., Haast, S. J. P., and Hermens, W. T. J. M. C. (2007) Improved AAV vectors produced in insect cells. WO 2007/046703 A2.

    Google Scholar 

  42. Chen, H. (2008) Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells. Mol. Ther. 16, 924–930.

    Article  PubMed  CAS  Google Scholar 

  43. Smith, R. H., Levy, J. R., and Kotin, R. M. (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol. Ther. 17, 1888–1896.

    Google Scholar 

  44. Aslanidi, G., Lamb, K., and Zolotukhin, S. (2009) An inducible system for highly efficient production of recombinant adeno-­associated virus (rAAV) vectors in insect Sf9 cells. Proc. Natl. Acad. Sci. U S A. 106, 5059–5064.

    Article  PubMed  CAS  Google Scholar 

  45. Cecchini, S., Virag, T., Negrete, A., and Kotin, R. M. (2009) Production and processing of rAAV-U7smOPT in 100 L bioreactors for canine models of Duchenne muscular dystrophy. Mol. Ther. 17, S1

    Article  Google Scholar 

  46. Mena, Y. A., Aucoin, M. G., Chahal, P. S., and Kamen, A. A. (2008) Improvement of adeno-associated vector titers in high density insect cell cultures by combined feeding and asynchronous infection. Poster P12 presented at the ATGQ (Association de thérapie génique du Québec) Meeting, 26–27 May 2008, Montreal/Quebec.

    Google Scholar 

  47. Snyder, R. O., Xiao, X., and Samulski, R. J. (1996) Production of recombinant adeno-associated viral vectors. In: N. Dracopoli JH, B. Krof, D. Moir, C. Morton, C. Seidman, J. Seidman, and D. Smith (ed). Current Protocols in Human Genetics. John Wiley and Sons Publisher: New York, pp. 12.11.11–24.

    Google Scholar 

  48. Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., et al. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, ­973–985.

    Article  PubMed  CAS  Google Scholar 

  49. Zolotukhin, S., Potter, M., Zolotukhin, I., Sakai, Y., Loiler, S., Fraites, T. J. Jr., et al. (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28, 158–167.

    Article  PubMed  CAS  Google Scholar 

  50. Brument, N., Morenweiser, R., Blouin, V., Toublanc, E., Raimbaud, I., Chérel, Y., et al. (2002) A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5. Mol. Ther. 6, 678–686.

    Article  PubMed  CAS  Google Scholar 

  51. Kaludov, N., Handelman, B., and Chiorini, J. A. (2002) Scalable purification of adeno-­associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum. Gene Ther. 13, 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  52. Blouin, V., Brument, N., Toublanc, E., Raimbaud, I., Moullier, P., and Salvetti, A. (2004) Improving rAAV production and purification: towards the definition of a scalable process. J. Gen. Med. 6, S223–S228.

    Article  CAS  Google Scholar 

  53. Burova, E. and Ioffe, E. (2005) Chromato­graphic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther. 12, S5-S17.

    Article  PubMed  CAS  Google Scholar 

  54. Duffy, A. M., O’Doherty, A. M., O’Brian, T., and Strappe, P. M. (2005) Purification of ­adenovirus and adeno-associated virus: comparison of novel membrane-based technology to conventional techniques. Gene Ther. 12, S62–S72.

    Article  PubMed  CAS  Google Scholar 

  55. Drittanti, L., Jenny, C., Poulard, K., Samba, A., Manceau, P., Soria, N., et al. (2001) Optimised helper virus-free production of high-quality adeno-associated virus vectors. J. Gene Med. 3, 59–71.

    Article  PubMed  CAS  Google Scholar 

  56. Farson, D., Harding, T. C., Tao, L., Liu, J., Powell, S., Vimal, V., et al. (2004) Development and characterization of a cell line for ­large-scale, serum-free production of recombinant ­adeno-associated viral vectors. J. Gen. Med. 6, 1369–1381.

    Article  CAS  Google Scholar 

  57. Salvetti, A., Oreve, S., Chadeuf, G., Favre, D., Cherel, Y., Champion-Arnaud, P., et al. (1998) Factors influencing recombinant adeno-associated virus production. Hum.Gene Ther. 9, 695–706.

    Article  PubMed  CAS  Google Scholar 

  58. Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., et al. (2005) Guidance on Good Cell Culture Practice. A report of the second ECVAM task force on Good Cell Culture Practice. ATLA 33, 261–287.

    PubMed  CAS  Google Scholar 

  59. Rohr, U. P., Wulf, M. A., Stahn, S., Steidl, U., Haas, R., and Kronenwett, R. (2002) Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR. J. Virol. Methods 106, 81–88.

    Article  PubMed  CAS  Google Scholar 

  60. Rohr, U. P., Heyd, F., Neukirchen, J., Wulf, M. A., Queitsch, I., Kroener-Lux, G., et al. (2005) Quantitative real-time PCR for titration of infectious recombinant AAV-2 particles. J. Virol. Methods 127, 40–45.

    Article  PubMed  CAS  Google Scholar 

  61. Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G.J., et al. (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5, 938–945.

    Article  PubMed  CAS  Google Scholar 

  62. Grimm, D., Kern, A., Pawlita, M., Ferrari, F., Samulski, R., Kleinschmidt, J. (1999) Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther 6, 1322–1330.

    Article  PubMed  CAS  Google Scholar 

  63. Collaco, R.F., Cao, X., and Trempe, J.P. (1999) A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238, 397–405.

    Article  PubMed  CAS  Google Scholar 

  64. Jenny, C., Toublanc, E., Danos, O., and Merten, O.-W. (2005) Serum-free production of rAAV-2 using HeLa derived producer cells. Cytotechnology 49, 11–23.

    Article  PubMed  CAS  Google Scholar 

  65. Gao, G.P., Lu, F., Sanmiguel, J.C., Tran, P.T., Abbas, Z., Lynd, K.S., et al. (2002) Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol Ther 5, 644–649.

    Article  PubMed  CAS  Google Scholar 

  66. Farson, D., Harding, T.C., Tao, L., Liu, J., Powell, S., Vimal, V., et al. (2004) Development and characterization of a cell line for large-scale, serum-free production of recombinant adeno-associated viral vectors. J Gene Med. 6, 1369–1381.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These protocols are based on the protocols used at the 3rd Eurolabcourse: Advanced industrial methods for production, purification and characterisataion of gene vectors (see http://www.easco.org/adminarea/upload/files/0306_0720_EVRY2004Report.pdf) (organizers: O.-W. Merten, M. Mezzina and G. Waksmann), Evry/F, 14–26 June 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto-Wilhelm Merten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Mezzina, M., Merten, OW. (2011). Adeno-Associated Viruses. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics