Advertisement

Host Cells and Cell Banking

  • Glyn N. Stacey
  • Otto-Wilhelm Merten
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 737)

Abstract

Gene therapy based on the use of viral vectors is entirely dependent on the use of animal cell lines, mainly of mammalian origin, but also of insect origin. As for any biotechnology product for clinical use, viral ­vectors have to be produced with cells derived from an extensively characterized cell bank to maintain the appropriate standard for assuring the lowest risk for the patients to be treated. Although many different cell types and lines have been used for the production of viral vectors, HEK293 cells or their derivatives have been extensively used for production of different vector types: adenovirus, oncorectrovirus, lentivirus, and AAV vectors, because of their easy handling and the possibility to grow them adherently in serum-containing medium as well as in suspension in serum-free culture medium. Despite this, these cells are not necessarily the best for the production of a given viral vector, and there are many other cell lines with significant advantages including superior growth and/or production characteristics, which have been tested and also used for the production of clinical vector batches. This chapter presents basic ­considerations concerning the characterization of cell banks, in the first part, and, in the second part, practically all cell lines (at least when public information was available) established and developed for the production of the most important viral vectors (adenoviral, oncoretroviral, lentiviral, AAV, baculovirus).

Key words

Cell bank Cell-line characterization Host cell lines Oncoretroviral vector Lentiviral vector Adeno-associated viral vector Adenoviral vector Baculovirus 

Notes

Glossary

Ad

Adenovirus

AAV

Adeno-associated virus

ATCC

American Type Culture Collection

BHK

Baby hamster kidney (cell line)

CBER

Centers for Biologics Evaluation and Research

CMV

Cytomegalovirus

Cox 1

Cytochrome oxidase 1

CuO

Cumate operator

DMEM

Dulbecco’s Modified Eagle Medium

DMSO

Dimethylsulphoxide

DRP

DNAse-resistant particles

DSMZ

Deutsche Sammlung von Mikroorganismen und Zellkulturen: (German Resource Centre for Biological Material)

E1, E4

Early genes of adenovirus

EBV

Epstein-Barr virus

ECACC

European Collection of Cell Cultures

EMEA (EMA)

European Medicine Agency

FBS

Fetal bovine serum

FCS

Fetal calf serum

FDA

Food and Drug Administration

G418

Geneticin

GaLV

Gibbon Ape leukemia Virus

GCCP

Good cell culture practice

GFP

Green fluorescent protein

GOI

Gene of interest

GP

Gag-pol

HAT

Hypoxanthine–Aminopterin–Thymidine

HBV

Hepatitis B virus

HCV

Hepatitis C virus

HEK

Human embryonic kidney (cell line)

HIV

Human immunodeficiency virus

hGPK

Human phosphoglycerate kinase promoter

HSV

Herpes simplex virus

ICH

International Conference on Harmonisation

ICLC

Interlab Cell Line Collection

IP

Infectious particle

IRES

Internal ribosomal entry sites

ITR

Inverted terminal repeat

JCRB

Japanese Collection of Research Bioresources

LV

Lentivirus/lentiviral

LTR

Long terminal repeat

MCB

Master cell bank

MLV

Murine leukemia virus

MoLV

Molony leukemia virus

MOI

Multiplicity of infection

MpF

Mustela putoris furo (ferret)

MSCV

Murine Stem Cell Virus

NIH

National Institutes of Health

ORF

Open reading frame

P

Passage or promoter

PCR

Polymerase chain reaction

RCA

Replication-competent adenovirus

RCAAV

Replication-competent adeno-associated virus

RCL

Replication-competent lentivirus

RCR

Replication-competent retrovirus

rtTa2S-m2

Reverse transactivator (rtTA2S-M2) of the tetracycline (Tet)

SFM

Serum-free medium

SIN

Self-inactivating (vector)

SV

Simian virus

TetR

Tetracyclin resistance

TK

Thymidine kinase

TNCL

Tn5 cell line

TU

Transducing unit

VSV

Vesicular stomatitis virus

Vg/vg

Vector genome

WCB

Working cell bank

Wt/WT

Wild type

References

  1. 1.
    ICH (1997) ICH Topic Q5 D Quality of Biotechnological Products: Derivation and Charaerisation of cell Substrates Use for Production of Biotechnological/Biological Products. CPMP/ICH/294/95. ICH Technical Coordination, European Medicines Evaluation Agency, London, UK.Google Scholar
  2. 2.
    ICH (1998) Guidance on Quality of Biotechnological/Biological Products: Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products. Fed. Reg. 63, 50244–50249.Google Scholar
  3. 3.
    Knezevic, I., Stacey, G., Petricciani, J., Sheets, R., and the WHO Study Group on Cell Substrates. (2010) Evaluation of cell substrates for the production of biologicals: Revision of WHO recommendations. Report of the WHO Study Group on Cell Substrates for the Production of Biologicals, 22–23 April 2009, Bethesda, USA. Biologicals. 38, 162–169.Google Scholar
  4. 4.
    WHO (Expert Committee on Biological Standardisation and Executive Board) (1998) Requirements for the use of animal cells as in vitro substrates for the production of biologicals. (Requirements for biological substances no. 50) WHO Technical Report Series 848, WHO, Geneva, Switzerland.Google Scholar
  5. 5.
    Phillips, H. J. (1973) In: Tissue Culture: Methods and Applications (ed. P.F. Kruse Jr. and M. K. Patterson), pp. 406–408, Academic Press, NJ, USA.Google Scholar
  6. 6.
    Patterson, M. K. (1979) Measurement of growth and viability of cells in culture. Methods Enzymol. 58, 141–152.PubMedGoogle Scholar
  7. 7.
    Freshney, R. I. (2005) Culture of Animal Cells: A Manual of Basic Techniques, 5th edition, Wiley-Liss, NY, USA.Google Scholar
  8. 8.
    Carrier, T., Donahue-Hjelle, L., and Stramaglia, M.J. (2009) Banking parental cells according to cGMP guidelines. BioProcess International 7, 20–25.Google Scholar
  9. 9.
    Stacey, G. N., and Masters, J. R. (2008) Cryopreservation and banking of mammalian cell lines. Nature Protocols 3, 1981–1989.PubMedGoogle Scholar
  10. 10.
    Gartler, S.M. (1967) Genetic markers as tracers in cell culture. Natl. Cancer Inst. Monogr. 26, 167–195.PubMedGoogle Scholar
  11. 11.
    Nelson-Rees, W. A., Daniels, D. W., and Flandermeyer, R. R. (1989) Cross-contamination of cells in culture. Science 212, 446–452.Google Scholar
  12. 12.
    MacLeod, R. A., Dirks, W. G., Matsuo, Y., Kaufmann, M., Milch, H., and Drexler, H. G. (1999) Widespread intra-species cross-contamination of human tumor cell lines arising at source. Int. J. Cancer 12, 555–563.Google Scholar
  13. 13.
    Melcher, R., Maisch, S., Koehler, S., Bauer, M., Steinlein, C., Schmid, M., et al. (2005) SKY and genetic fingerprinting reveal a cross-contamination of the putative normal colon epithelial cell line NCOL-1. Cancer Genet. Cytogenet. 158, 84–87.PubMedGoogle Scholar
  14. 14.
    Masters, J. R., Thomson, J. A., Daly-Burns, B., Reid, Y. A., Dirks, W. G., Packer, P., et al. (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl. Acad. Sci. USA 98, 8012–8017.PubMedGoogle Scholar
  15. 15.
    Parson, W., Kirchebner, R., Mühlmann, R., Renner, K., Kofler, A., Schmidt, S., et al. (2005) Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J. 19, 434–436.PubMedGoogle Scholar
  16. 16.
    Hellmann, A. P., Rohleder, U., Eichmann, C., Pfeiffer, I., Parson, W., and Schleenbecker, U. (2006) A proposal for standardization in forensic canine DNA typing: allele nomenclature of six canine-specific STR loci. J. Forensic. Sci. 51, 274–281.PubMedGoogle Scholar
  17. 17.
    Raveendran, M., Harris, R. A., Milosavljevic, A., Johnson, Z., Shelledy, W., Cameron, J., et al. (2006) Designing new microsatellite markers for linkage and population genetic analyses in rhesus macaques and other nonhuman primates. Genomics 88, 706–710.PubMedGoogle Scholar
  18. 18.
    Smith, D. G., Kanthaswamy, S., Viray, J., and Cody, L. (2000) Additional highly polymorphic microsatellite (STR) loci for estimating kinship in rhesus macaques (Macaca mulatta). Am. J. Primatol. 50, 1–7.PubMedGoogle Scholar
  19. 19.
    Stacey, G. N., Hoelzl, H., Stephenson, J. R. and Doyle, A. (1997) Authentication of animal cell cultures by direct visualisation of DNA, Aldolase gene PCR and isoenzyme analysis. Biologicals 25, 75–83.PubMedGoogle Scholar
  20. 20.
    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299.PubMedGoogle Scholar
  21. 21.
    Stacey, G., Byrne, E. and Hawkins, J.R. (2007) DNA fingerprinting and the characterisation of Animal Cell Lines. In: Animal Cell Biotechnology, 2nd Edition. Ed Poertner, R, Humana press, Totowa, NJ, pp123–145.Google Scholar
  22. 22.
    European Pharmacopeia (2007). European Pharmacopeia section 2.6.1 (Sterility) (6th Edition), Supplement 8, Maisonneuve SA, Sainte Ruffine, pp. 5795–5797 (www.pheur.org).
  23. 23.
    US Food and Drug Administration (2005) Title 21, Code of Federal Regulations, Volume 7, revised April 2005, CFR610.12 (Sterility), FDA, Department of Health and Human Services.Google Scholar
  24. 24.
    European Pharmacopeia (2007). European Pharmacopeia section 2.6.7 (Mycoplasma) (6th Edition), Supplement 6.1, Maisonneuve SA, Sainte Ruffine, pp. 3317–3322.Google Scholar
  25. 25.
    US Food and Drug Administration (2005) Title 21, Code of Federal Regulations, Volume 7, revised April 2005, CFR610.30 (Test for Mycoplama), FDA, Department of Health and Human Services.Google Scholar
  26. 26.
    Lelong-Rebel, I. H., Piemont, Y., Fabre, M., and Rebel, G. (2009) Mycobacterium avium-intracellulare contamination of mammalian cell cultures. In Vitro Cell. Dev. Biol. Anim. 45, 75–90.PubMedGoogle Scholar
  27. 27.
    Stacey, G. N. (2007) Risk assessment of cell culture procedures. In: Medicines from Animal Cell Culture. Eds Stacey G. and Davis J., John Wiley & Sons Ltd., pp. 569–588.Google Scholar
  28. 28.
    Ecker, D. J., Sampath, R., Massire, C., Blyn, L. B., Hall, T. A., Eshoo, M. W., et al. (2008) Ibis T5000: a universal biosensor approach for microbiology. Nat. Rev. Microbiol. 6, 553–558.PubMedGoogle Scholar
  29. 29.
    Merten, O.-W., and Audit, M. (2003) Gene therapy – general safety tests and vector specific safety issues. In. Proceedings of the EDQM-Meeting on “Standardisation and quality control – cell and gene therapy products”, pp. 35–57, Strasbourg/F, 24th-25th February, 2003, © Council of Europe.Google Scholar
  30. 30.
    CBER (1998) Guidance for Industry – Guidance for Human Somatic Cell Therapy and Gene Therapy. U.S. Department of Health and Human Services – Food and Drug Administration.Google Scholar
  31. 31.
    Rowe W. P., Pugh, W. E., and Hartley, J. W. (1970) Plaque assay techniques for murine leukemia viruses. Virology 42, 1136–1139.PubMedGoogle Scholar
  32. 32.
    Haapala, D. K., Robey, W. G., Oroszlan, S. D., and Tsai, W. P. (1985) Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J. Virol. 53, 827–833.PubMedGoogle Scholar
  33. 33.
    Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 62, 1120–1124.PubMedGoogle Scholar
  34. 34.
    Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 167, 400–406.PubMedGoogle Scholar
  35. 35.
    Kim, Y.-S., Lim, H. K., and Kim, K. J. (1998) Production of high-titer retroviral vectors and detection of replication-competent retroviruses. Mol. Cells. 8, 36–42.PubMedGoogle Scholar
  36. 36.
    Chen, J., Reeves. L., and Cornetta, K. (2001) Safety testing for replication-competent retrovirus associated with Gibbon Ape Leukemia Virus-pseudotypes retroviral vector. Hum. Gene Ther. 12, 61–70.PubMedGoogle Scholar
  37. 37.
    Audit, M., and Cosset, F. L. (2001) Plasmide chimère comprenant des séquences GAG, POL et enveloppes d’origine rétrovirales et utlisations. French patent. n° 01.14976, date 20.1.01.Google Scholar
  38. 38.
    Farson, D., Witt, R., McGuinness, R., Dull, T., Kelly, M., Song, J., et al. (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 12, 981–997.PubMedGoogle Scholar
  39. 39.
    Smith, K. T., Shepherd, A. J., Boyd, J. E., and Lees, G. M. (1996) Gene delivery systems for use in gene therapy: an overview of quality assurance and safety issues. Gene Ther. 3, 190–200.PubMedGoogle Scholar
  40. 40.
    Ma, D., Newman, A., Lucas, W. T., Meloro, R. N., Rudderow, L., Hughes, J. V., et al. (2002) Methods for detection and evaluation of replication competent adenovirus (RCA). BioProcessing Fall26–30.Google Scholar
  41. 41.
    Koeberl, D. D., Alexander, I. E., Halbert, C. L., Russell, D. W., and Miller, A. D. (1997) Persistant expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc. Natl. Acad. Sci. USA 94, 1426–1431.PubMedGoogle Scholar
  42. 42.
    Cao, L., During, M., and Xiao, W. (2002) Replication competent helper functions for recombinant AAV vector generation. Gene Ther. 9, 1199–1206.PubMedGoogle Scholar
  43. 43.
    Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., et al. (2005), Guidance on Good Cell Culture Practice. A report of the second ECVAM Task Force on Good Cell Culture Practice. ATLA 33, 1–27.Google Scholar
  44. 44.
    Pegg, D. (2007) Fundamentals of cryopreservation. Cryopreservation and Freeze­drying Methods. Eds. Day, D. G. and Stacey, G. N., Humana Press, Totowa, USA.Google Scholar
  45. 45.
    Gray, J. S., Birmingham, J. M., and Fenton, J. I. (2009) Got black swimming dots in your cell culture? Identification of Achromobacter as a novel cell culture contaminant. Biologicals 38, 273–277.Google Scholar
  46. 46.
    McDaniel, L. D. and Schultz, R. A. (1993) Elevation of sister chromatid exchange ­frequency in transformed human fibroblasts following exposure to widely used ­aminoglycosides. Environ. Mol. Mutagen 21, 67–72.PubMedGoogle Scholar
  47. 47.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.PubMedGoogle Scholar
  48. 48.
    Louis, N., Evelegh, C., and Graham, F. L. (1997). Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233, 423–429.PubMedGoogle Scholar
  49. 49.
    Lewis, A. M. Jr., Krause, P., and Peden, K. (2001) A defined-risks approach to the regulatory assessment of the use of neoplastic cells as substrates for viral vaccine manufacture. Dev. Biol. 106, 513–535.Google Scholar
  50. 50.
    Shaw, G., Morse, S., Ararat, M., and Graham, F. L. (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16, 869–871.PubMedGoogle Scholar
  51. 51.
    Park, M. T., Lee, M. S., Kim, S. H., Jo, E. C., and Lee, G. M. (2004) Influence of culture passages on growth kinetics and adenovirus vector production for gene therapy in monolayer and suspension cultures of HEK 293 cells. Appl. Microbiol. Biotechnol. 65, 553–558.PubMedGoogle Scholar
  52. 52.
    Shen, C., Gu, M., Song, C., Miao, L., Hu, L., Liang, D., et al. (2008) The tumorigenicity diversification in human embryonic kidney 293 cell line cultured in vitro. Biologicals 36, 263–268.PubMedGoogle Scholar
  53. 53.
    Jardon, M., and Garnier, A. (2003) pH, pCO2, and termperature effect on r-adenovirus production. Biotechnol. Prog. 19, 202–208.PubMedGoogle Scholar
  54. 54.
    Kotani, H., Newton, P. B. 3rd, Zhang, S., Chiang, Y. L., Otto, E., Weaver, L., et al. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28.PubMedGoogle Scholar
  55. 55.
    Kaptein, L. C., Greijer, A., Valerio, D., and van Beusechem, V.W. (1997) Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene. Ther. 4, 172–176.PubMedGoogle Scholar
  56. 56.
    Le Doux, J. M., Davis, H. E., Morgan, J. R., and Yarmush, M. L. (1999) Kinetics of retrovirus production and decay. Biotechnol. Bioeng. 63, 654–662.PubMedGoogle Scholar
  57. 57.
    Merten, O.-W., Charrier, S., Laroudie, N., Fauchille, S., Dugué, C., Jenny, C., et al. (2011) Large scale manufacture and characterisation of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum. Gene Ther. 22, 343–356.Google Scholar
  58. 58.
    Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA. 90, 8392–8396.PubMedGoogle Scholar
  59. 59.
    Pensiero, M., et al. Retroviral vectors produced by producer cell lines resistant to lysis by human serum. US Patent 6,329,199 dated Dec 11 2001.Google Scholar
  60. 60.
    Ikeda, Y., Takeuchi, Y., Martin, F., Cosset, F. L., Mitrophanous, K., and Collins, M. (2003) Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21, 569–572.PubMedGoogle Scholar
  61. 61.
    Throm, R. E., Ouma, A. A., Zhou, S., Chandrasekaran, A., Lockey, T., Greene, M. et al. (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 113, 5104–5110.PubMedGoogle Scholar
  62. 62.
    Stewart, H. J., Leroux-Carlucci, M. A., Sion, C. J., Mitrophanous, K. A., and Radcliffe, P. A. (2009) Development of inducible EIAV-based lentiviral vector packaging and producer cell lines. Gene Ther. 16, 805–814.PubMedGoogle Scholar
  63. 63.
    Segura, M. M., Garnier, A., Durocher, Y., Coelho, H., and Kamen, A. (2007) Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol. Bioeng. 98, 789–799.PubMedGoogle Scholar
  64. 64.
    Durocher, Y., Pham, P. L., St-Laurent, G., Jacob, D., Cass, B., Chahal, P. et al. (2007) Scalable serum-free production of recombinant adeno-associated virus type 2 by transfection of 293 suspension cells. J. Virol. Meth. 144, 32–40.Google Scholar
  65. 65.
    Torrent, C., Bordet, T., and Darlix, J. L. (1994) Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. J. Mol. Biol. 240, 434–444.PubMedGoogle Scholar
  66. 66.
    Cosset, F., Takeuchi, Y., Battini, J., Weiss, R. A., and Collins, M. K. L. (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.PubMedGoogle Scholar
  67. 67.
    Pensiero, M. N., Wysocki, C. A., Nader, K., and Kikuchi, G. E. (1996) Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum. Gene Ther. 7, 1095–1101.PubMedGoogle Scholar
  68. 68.
    Rigg, R. J., Chen. J., Dando, J. S., Forestell, S. P., Plavec, I., and Böhnlein, E. (1996) A novel human amphotropic packaging cell line: high titer, complement resistance, and improved safety. Virology 218, 190–195.Google Scholar
  69. 69.
    Forestell, S. P., Dando, J. S., Chen, J., de Vries, P., Böhnlein, E., and Rigg, R. J. (1997) Novel retroviral packaging cell lines: ­complementary tropisms and improved vector production for efficient gene transfer. Gene Ther. 4, 600–610.PubMedGoogle Scholar
  70. 70.
    Sheridan, P. L., Bodner, M., Lynn, A., Phuong, T. K., DePolo, N. J., de la Vega, D. J. Jr., et al. (2000) Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol. Ther. 2, 262–275.Google Scholar
  71. 71.
    Patience, C., Takeuchi, Y., Cosset, F.-L., and Weiss, R. A. (2001) MuLV packaging systems as models for estimating/measuring retrovirus recombination frequency. Dev. Biol. 106, 169–179.Google Scholar
  72. 72.
    Duisit, G., Salvetti, A., Moullier, P., and Cosset, F.-L. (1999) Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines. Hum. Gene Ther. 10, 189–200.PubMedGoogle Scholar
  73. 73.
    Pizzato, M., Merten, O.W., Blair, E.D., and Takeuchi, Y. (2001) Development of a suspension packaging cell line for production of high titre, serum-resistant murine leukemia virus vector. Gene Ther. 8, 737–745.PubMedGoogle Scholar
  74. 74.
    Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K. (1982) Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36.PubMedGoogle Scholar
  75. 75.
    Hatzoglou, M., Hodgson, C. P., Mularo, F., and Hanson, R. W. (1990) Efficient packaging of a specific VL30 retroelement by psi 2 cells which produce MoMLV recombinant retroviruses. Hum. Gene Ther. 1, 385–397.PubMedGoogle Scholar
  76. 76.
    Farson, D., McGuinness, R., Dull, T., Limoli, K., Lazar, R., Jalali, S., et al. (1999) Large-scale manufacturing of safe and efficient retrovirus packaging lines for use in immunotherapy protocols. J. Gene Med. 1, 195–209.PubMedGoogle Scholar
  77. 77.
    Davis, J. L., Witt, R. M., Gross, P. R., Hokanson, C. A., Jungles, S., Cohen, L. K., et al. (1997) Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum Gene Ther. 8, 1459–1467.PubMedGoogle Scholar
  78. 78.
    Jolly, D. (1994) Viral vector systems for gene therapy. Cancer Gene Ther. 1, 51–64.PubMedGoogle Scholar
  79. 79.
    Mason, J. M., Guzowski, D. E., Goodwin, L. O., Porti, D., Cronin, K. C., Teichberg, S., et al. (1999) Human serum-resistant retroviral vector, particles from galactosyl containing nonprimate cell lines. Gene Ther. 6, 1397–1405.PubMedGoogle Scholar
  80. 80.
    Rigg, R. J., et al. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant. US Patent 6,017,761 dated Jan 25 2000.Google Scholar
  81. 81.
    Ghani,  K., Cottin,  S., Kamen,  A., and Caruso,  M. (2007) Generation of a high-titer packaging cell line for the production of retroviral vectors in suspension and serum-free media. Gene Ther. 14, 1705–1711.PubMedGoogle Scholar
  82. 82.
    Schucht, R., Coroadinha, A. S., Zanta-Boussif, M. A., Verhoeyen, E., Carrondo, M. J., Hauser, H., et al. (2006) A new generation of retroviral producer cells: predictable and stable virus production by Flp-mediated site-specific integration of retroviral vectors. Mol. Ther. 14, 285–292.PubMedGoogle Scholar
  83. 83.
    Coroadinha, A. S., Schucht, R., Gama-Norton, L., Wirth, D., Hauser, H., and Carrondo, M. J. (2006) The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J. Biotechnol. 124, 457–468.PubMedGoogle Scholar
  84. 84.
    Spitzer, D., Hauser, H., and Wirth, D. (1999) Complement-protected amphotropic retroviruses from murine packaging cells. Hum. Gene Ther. 10, 1893–1902.PubMedGoogle Scholar
  85. 85.
    Loew, R., Meyer, Y., Kuehlcke, K., Gama-Norton, L., Wirth, D., Hauser, H., et al. (2010) A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating gamma-retroviral vectors using targeted integration. Gene Ther. 17, 272–280.PubMedGoogle Scholar
  86. 86.
    Slepushkin, V., Chang, N., Cohen, R., Gan, Y., Jiang, B., Deausen, E., et al. (2003) Large-scale purification of a lentiviral vector by size exclusion chromatography or Mustang Q ion exchange chromatography. Bioproc. J. September/October 2003, 89–95.Google Scholar
  87. 87.
    Couture, L. A. (2008) Vector production in support of early clinical trials. Presented at the ASGT Meeting, Boston/USA, 28.5.–1.6.08.Google Scholar
  88. 88.
    Dupont, F. (2008) Large scale manufacturing of a lentiviral vector (ProSavin®) for phase I/II clinical trial. Presented at the CONSERT Labcourse, Evry/F, 29.6.–1.7.08.Google Scholar
  89. 89.
    Negré, O., Denaro, M., Gillet-Legrand, B., Fusil, F., Hehir, K., Dorazio, R., et al. (2008) Long-term correction of murine beta-thalassemia following busulfan conditioning and transplant of bone marrow transduced with clinical-grade lentiviral vector (LentiGlobin™). Mol. Ther. 16, S85.Google Scholar
  90. 90.
    Côté, J., Garnier, A., Massie, B., and Kamen, A.. (1998) Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3 F6 cells. Biotechnol. Bioeng. 59, 567–575.PubMedGoogle Scholar
  91. 91.
    Ansorge, S., Lanthier, S., Transfiguracion, J., Durocher, Y., Henry, O., and Kamen, A. (2009) Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J. Gene Med. 11, 868–876.PubMedGoogle Scholar
  92. 92.
    Klages, N., Zufferey, R., and Trono, D. (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176.PubMedGoogle Scholar
  93. 93.
    Ni, Y., Sun, S., Oparaocha, I., Humeau, L., Davis, B., Cohen, R., et al. (2005) Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J. Gene Med. 7, 818–834.PubMedGoogle Scholar
  94. 94.
    Xu, K, Ma, H., McCown, T. J., Verma, I. M., and Kafri, T. (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 3, 97–104.PubMedGoogle Scholar
  95. 95.
    Brousseau, S., Jabbour, N., Lachapelle, G., Durocher, Y., Tom, R., Transfiguracion, J., et al. (2008) Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol. Ther. 16, 500–507.Google Scholar
  96. 96.
    Rohll, J. B., Mitrophanous, K. A., Martin-Rendon, E., Ellard, F. M., Radcliffe, P. A., Mazarakis, N.D., et al. (2002) Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol. 346, 466–500.PubMedGoogle Scholar
  97. 97.
    Kaplan, A. H., and Swanstrom, R. (1991) The HIV-1 gag precursor is processed via two pathways: implications for cytotoxicity. Biomed. Biochim. Acta. 50, 647–53.PubMedGoogle Scholar
  98. 98.
    Karacostas, V., Wolffe, E.J., Nagashima, K., Gonda, M.A., and Moss, B. (1993) Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193, 661–671.PubMedGoogle Scholar
  99. 99.
    Kafri, T., van Praag  , H., Ouyang, L., Gage, F. H., and Verma, I. M. (1999) A packaging cell line for lentivirus vectors. J. Virol. 73, 576–584.PubMedGoogle Scholar
  100. 100.
    Zufferey, R. (2002) Production of lentiviral vectors. Curr. Top. Microbiol. Immunol. 261, 107–121.PubMedGoogle Scholar
  101. 101.
    Sodroski, J., Goh, W. C., Rosen, C., Campbell, K., and Haseltine, W.A. (1986) Role of the HTLV-III/LAV envelope in ­syncytium formation and cytopathicity. Nature 322, 470–474.PubMedGoogle Scholar
  102. 102.
    Imler, J. L., Chartier, C., Dreyer, D., Dieterle, A., Sainte-Marie, M., Faure, T., et al. (1996) Novel complementation cell lines derived from human lung carcinoma A549 cells ­support the growth of E1-deleted adenovirus vectors. Gene Ther. 3, 75–84.PubMedGoogle Scholar
  103. 103.
    Fallaux, F. J., Bout, A., van der Velde, I., van den Wollenberg, D. J., Hehir, K. M., Keegan, J., et al. (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 9, 1909–1917.PubMedGoogle Scholar
  104. 104.
    Copeland, N. G., and Cooper G. M. (1979) Transfection by exogenous and endogenous murine retrovirus DNAs. Cell 16, 347–356.PubMedGoogle Scholar
  105. 105.
    Copeland, N. G., Zelenetz, A. D., and Cooper, G. M. (1979) Transformation of NIH/3T3 mouse cells by DNA of Rous sarcoma virus. Cell 17, 993–1002.PubMedGoogle Scholar
  106. 106.
    Markowitz, D., Hesdorffer, C., Ward, M., Goff, S., and Bank, A. (1990) Retroviral gene transfer using safe and efficient packaging cell lines. Ann. N. Y. Acad. Sci. 612, 407–414.PubMedGoogle Scholar
  107. 107.
    Danos, O., and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.PubMedGoogle Scholar
  108. 108.
    Merten, O.-W., Cornet, V., Petres, S., Couvé, E., and Heard, J. M. (1996) Large scale production of retro-virus vectors. Cytotechnology 21, 8.Google Scholar
  109. 109.
    Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, C. M., Wilson, C., and Eiden, M. V. (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224.PubMedGoogle Scholar
  110. 110.
    Fallaux, F. J., Kranenurg, O. Cramer, S. J., Houweling, A., Van Ormondt, H., Hoeben, R. C., et al. (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum. Gene Ther. 7, 215–222.Google Scholar
  111. 111.
    Schiedner, G., Hertel, S., and Kochanek, S. (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum. Gene Ther. 11, 2105–2116.PubMedGoogle Scholar
  112. 112.
    Xu, Q., Arevalo, M. T., Pichichero, M. E., and Zeng, M. (2006) A new complementing cell line for replication-incompetent E1-deleted adenovirus propagation. Cytotechnology. 51, 133–140.PubMedGoogle Scholar
  113. 113.
    Nadeau, I., and Kamen, A. (2003) Production of adenovirus vector for gene therapy. Biotechnol. Adv. 20, 475–489.PubMedGoogle Scholar
  114. 114.
    Zhang, S., Thwin, C., Wu, Z., and Cho, T. (1998) An improved method for the ­production and purification of adenoviral vectors. International Patent, WO 98/22588.Google Scholar
  115. 115.
    Iyer, P., Ostrove, J. M., and Vacante, D. (1999) Comparison of manufacturing techniques for adenovirus production. Cytotechnology 30, 169–172.PubMedGoogle Scholar
  116. 116.
    Nadeau, I., Seanez, G., and Wu, F. (2001) Adenovirus production in 293 cells: a comparative study between a suspension cell and an adherent cell process. Presented at the 17th ESACT Meeting, Tylösand, Sweden, June 10–14, 2001.Google Scholar
  117. 117.
    Irish, T., Baker, W., Fresner, B., Abraham, G., Tvijn, C., Lardenoije, R., et al. (2000) A comparative study of large-scale production strategies used to produce RCA free adenovirus preparations in serum-free media. Research Report. JRH Bioscience, Lenexa, KS, USA.Google Scholar
  118. 118.
    Liu, L. C., and Shoupeng, L. (2001) Method of producing adenoviral vector stocks. US Patent No. 618941 B1, Jan 2001.Google Scholar
  119. 119.
    Chaubard, J. F. (2000) Serum-free media and bioreactor strategies for manufacturing adenoviral gene therapy vectors. Viral vectors. Viral vectors and vaccines, Lake Tahoe, NV, Nov. 6–9, 2000.Google Scholar
  120. 120.
    Garnier, A., Cortin, V., Thibault, J., and Jacob, D. (2002) Production of recombinant adenovirus by 293 cells cultures in perfusion. Cell culture engineering VIII, April 1–6, 2002, Snowmass, CO.Google Scholar
  121. 121.
    Nadeau, I., Seanez, G., and Wu, F. (2002) Optimization of a 293 suspension process for adenovirus production. Cell Culture Engineering VIII, April 1–6, Snowmass, CO.Google Scholar
  122. 122.
    Parks, R. J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA. 93, 13565–13570.PubMedGoogle Scholar
  123. 123.
    Alba, R., Bosch, A., and Chillon, M. (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 12: Suppl 1, S18–S27.PubMedGoogle Scholar
  124. 124.
    Barjot, C., Hartigan-O’Connor, D., Salvatori, G., Scott, J. M., and Chamberlain, J. S. (2002) Gutted adenoviral vector growth using E1/E2b/E3-deleted helper viruses. J. Gene Med. 4, 480–489.PubMedGoogle Scholar
  125. 125.
    Puck, T. T., and Fisher, H. W. (1956) Genetics of somatic mammalian cells: I. Demonstration of the existence of mutants with different growth requirements in a human cancer cell strain (HeLa). J. Exp. Med. 104, 427–434.PubMedGoogle Scholar
  126. 126.
    Darnell, J. E. Jr., Eagle, H., and Sawyer, T. K. (1959) The effect of cell population density on the amino acid requirements for poliovirus synthesis in HeLa cells. J. Exp. Med. 110, 445–450.PubMedGoogle Scholar
  127. 127.
    Forestell, S., Celeri, C., Dang, C., Gong, T., Olsen, M., Sifi, I., et al. (2005) Comparison of host cell lines and production methods for a new generation of oncolytic adenoviral vectors. In: F. Godia and M. Fussenegger teds.), Animal Cell Technology meets genomics, pp. 309–316, Springer, Dordrecht/NL.Google Scholar
  128. 128.
    Yuk, I. H., Olsen, M. M., Geyer, S., and Forestell, S. P. (2004) Perfusion cultures of human tumor cells: a scalable production platform for oncolytic adenoviral vectors. Biotechnol. Bioeng. 86, 637–642.PubMedGoogle Scholar
  129. 129.
    Merten, O.-W., Gény-Fiamma, C., and Douar, A. M. (2005) Current issues in adeno-associated viral vector production. Gene Ther. 12, Suppl 1, S51–S61.PubMedGoogle Scholar
  130. 130.
    Gao, G.-P., Qu, G., Faust, L.Z., Engdahl, R.K., Xiao, W., Hughes, J.V., et al. (1998) High-titer adeno-associated viral vectors from a rep/cap cell line and hybrid shuttle virus. Hum. Gene Ther. 9, 2353–2362.PubMedGoogle Scholar
  131. 131.
    Gao, G.-P., Lu, F., Sanmiguel, J.C., Tran, P.T., Abbas, Z., Lynd, K.S., et al. (2002) Rep/cap gene amplification and high-yield production of AAV in an A549 cell line expressing rep/cap. Mol. Ther. 5, 644–649.PubMedGoogle Scholar
  132. 132.
    Clément, N., Knop, D. R., and Byrne, B. J. (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum. Gene Ther. 20, 796–806.PubMedGoogle Scholar
  133. 133.
    Thomas, D. L., Wang, L., Niamke, J., Liu, J., Kang, W., Scotti, M. M., et al. (2009) Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum. Gene Ther. 20, 861–870.PubMedGoogle Scholar
  134. 134.
    Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943.PubMedGoogle Scholar
  135. 135.
    Farson, D., Harding, T. C., Tao, L., Liu, J., Powell, S., Vimal, V., et al. (2004) Development and characterization of a cell line for large-scale, serum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 6, 1369–1381.PubMedGoogle Scholar
  136. 136.
    Chadeuf, G., Favre, D., Tessier, J., Provost, N., Nony, P., Kleinschmidt, J., et al. (2000) Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. J. Gene Med. 2, 260–268.PubMedGoogle Scholar
  137. 137.
    Samulski, R. J., Chang, L. S., and Shenk, T. (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3822–3828.PubMedGoogle Scholar
  138. 138.
    Blouin, V., Brument, N., Toublanc, E., Raimbaud, I., Moullier, P., and Salvetti, A. (2004) Improving rAAV production and purification: towards the definition of a scaleable process. J. Gene Med. 6, Suppl 1, S223–S228.PubMedGoogle Scholar
  139. 139.
    Jenny, C., Toublanc, E., Danos, O., and Merten, O. W. (2005) Evaluation of a ­serum-free medium for the production of rAAV-2 using HeLa derived producer cells. Cytotechnology 49, 11–23.PubMedGoogle Scholar
  140. 140.
    Merten, O.-W., Kierulff, J. V., Castignolles, N., and Perrin, P. (1994) Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnology 14, 47–59.PubMedGoogle Scholar
  141. 141.
    Airenne, K. J., Mähönen, A. J., Laitinen, O. H., and Ylä-Herttuala.S. (2009) Baculovirus-mediated gene transfer: An emerging universal concept, in Gene and cell therapy: Therapeutic mechanisms and strategies, (Templeton, N. S. ed.), CRC Press, Boca Raton, pp. 263–307.Google Scholar
  142. 142.
    Volkman, L. E., and Goldsmith, P. A. (1983) In vitro Survey of Autographa ­californica Nuclear Polyhedrosis Virus interaction with nontarget vertebrate host cells. Appl. Environ. Microbiol. 45, 1085–1093.PubMedGoogle Scholar
  143. 143.
    Condreay, J. P., Witherspoon, S. M., Clay, W. C., and Kost, T. A. (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 96, 127–132.PubMedGoogle Scholar
  144. 144.
    Song, S. U., Shin, S. H., Kim, S. K., Choi, G. S., Kim, W. C., Lee, M. H., et al. (2003) Effective transduction of osteogenic sarcoma cells by a baculovirus vector. J. Gen. Virol. 84, 697–703.PubMedGoogle Scholar
  145. 145.
    Hu, Y. C. (2008) Baculoviral vectors for gene delivery: a review. Curr. Gene Ther. 8, 54–65.PubMedGoogle Scholar
  146. 146.
    Cheng, T., Xu, C. Y., Wang, Y. B., Chen, M., Wu, T., Zhang, J., and Xia, N. S. (2004) A rapid and efficient method to express target genes in mammalian cells by baculovirus. World J. Gastroenterol. 10, 1612–1618.PubMedGoogle Scholar
  147. 147.
    Granados, R. R. (1978) Replication ­phenomena of insect viruses in vivo and in vitro, in Safety Aspects of Baculoviruses as Biological Insecticides, (Miltenburger, H. G. ed.), Bundesministerium für Forschung und Technologie, Bonn, pp. 163–184.Google Scholar
  148. 148.
    Li, T. C., Scotti, P. D., Miyamura, T., and Takeda, N. (2007) Latent infection of a new alphanodavirus in an insect cell line. J. Virol. 81, 10890–10896.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011 2011

Authors and Affiliations

  1. 1.GénéthonEvryFrance

Personalised recommendations