Introduction to Viral Vectors

  • James N. Warnock
  • Claire Daigre
  • Mohamed Al-Rubeai
Part of the Methods in Molecular Biology book series (MIMB, volume 737)


Viral vector is the most effective means of gene transfer to modify specific cell type or tissue and can be manipulated to express therapeutic genes. Several virus types are currently being investigated for use to deliver genes to cells to provide either transient or permanent transgene expression. These include adenoviruses (Ads), retroviruses (γ-retroviruses and lentiviruses), poxviruses, adeno-associated viruses, baculoviruses, and herpes simplex viruses. The choice of virus for routine clinical use will depend on the efficiency of transgene expression, ease of production, safety, toxicity, and stability. This chapter provides an introductory overview of the general characteristics of viral vectors commonly used in gene transfer and their advantages and disadvantages for gene therapy use.

Key words

Adenovirus Adeno-associated virus Lentivirus Retrovirus Baculovirus Poxvirus Herpes virus Virus infection Virus structure 


  1. 1.
    Schalk, J. A., Mooi, F. R., Berbers, G. A., van Aerts, L. A., Ovelgonne, H., and Kimman, T. G. (2006) Preclinical and clinical safety studies on DNA vaccines, Hum. Vaccin 2, 45–53.Google Scholar
  2. 2.
    Thomas, C. E., Ehrhardt, A., and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet. 4, 346–358.PubMedCrossRefGoogle Scholar
  3. 3.
    Mairhofer, J., and Grabherr, R. (2008) Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA, Mol. Biotechnol 39, 97–104.Google Scholar
  4. 4.
    Bower, D. M., and Prather, K. L. (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA, Appl. Microbiol. Biotechnol. 82, 805–813.Google Scholar
  5. 5.
    Navarro, J., Oudrhiri, N., Fabrega, S., and Lehn, P. (1998) Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors, Adv. Drug Deliv. Rev. 30, 5–11.Google Scholar
  6. 6.
    Bouard, D., Alazard-Dany, D., and Cosset, F. L. (2009) Viral vectors: from virology to transgene expression, Br. J. Pharmacol. 157, 153–165.Google Scholar
  7. 7.
    McTaggart, S., and Al-Rubeai, M. (2002) Retroviral vectors for human gene delivery, Biotechnol. Adv. 20, 1–31.Google Scholar
  8. 8.
    Rowe, W. P., Huebner, R. J., Gilmore, L. K., Parrott, R. H., and Ward, T. G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture, Proc. Soc. Exp. Biol. Med. 84, 570–573.Google Scholar
  9. 9.
    Shenk, T. (1996) Adenoviridae: The viruses and their replication in Fields Virology (Fields, B. N., Ed.), pp 2111-2148, Lippincott-Raven Publishers, Philadelphia, PA.Google Scholar
  10. 10.
    Kovesdi, I., Brough, D. E., Bruder, J. T., and Wickham, T. J. (1997) Adenoviral vectors for gene transfer, Curr. Opin. Biotechnol. 8, 583–589.Google Scholar
  11. 11.
    Douglas, J. T. (2007) Adenoviral vectors for gene therapy, Mol. Biotechnol. 36, 71–80.Google Scholar
  12. 12.
    Campos, S. K., and Barry, M. A. (2007) Current advances and future challenges in Adenoviral vector biology and targeting, Curr. Gene Ther. 7, 189–204.Google Scholar
  13. 13.
    Boyer, J., and Ketner, G. (1999) Adenovirus Late Gene Expression, in Aednovirues: Basic Biology to Gene Therapy (Seth, P., Ed.), pp 69–77, R. G. Landes Bioscience, Austin, TX.Google Scholar
  14. 14.
    Rux, J. J., and Burnett, R. (1999) in Adenoviruses: Basic Biology to Gene Therapy (Seth, P., Ed.), pp 5-15, Medical Intelligence 15. R. G. Landes Bioscience, Austin, TX.Google Scholar
  15. 15.
    Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5, Science 275, 1320–1323.Google Scholar
  16. 16.
    Tomko, R. P., Xu, R., and Philipson, L. (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses, Proc. Natl. Acad. Sci. USA 94, 3352–3356.Google Scholar
  17. 17.
    Berkner, K. L. (1988) Development of adenovirus vectors for the expression of heterologous genes, Biotechniques 6, 616–629.Google Scholar
  18. 18.
    Roth, J. A. (2006) Adenovirus p53 gene therapy, Expert Opin. Biol. Ther. 6, 55–61.Google Scholar
  19. 19.
    Onion, D., Patel, P., Pineda, R. G., James, N. D., and Mautner, V. (2009) Anti-Vector and Tumor Immune Responses following Adenovirus Directed Enzyme Pro-drug Therapy for the Treatment of Prostate Cancer, Hum. Gene Ther. 20, 1249–1258. Google Scholar
  20. 20.
    Patel, P., Young, J. G., Mautner, V., Ashdown, D., Bonney, S., Pineda, R. G., et al. (2009) A Phase I/II Clinical Trial in Localized Prostate Cancer of an Adenovirus Expressing Nitroreductase with CB1984, Mol. Ther. 17, 1292–1299.PubMedCrossRefGoogle Scholar
  21. 21.
    Pastore, L., Morral, N., Zhou, H., Garcia, R., Parks, R. J., Kochanek, S., et al. (1999) Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors, Hum. Gene Ther. 10, 1773–1781.PubMedCrossRefGoogle Scholar
  22. 22.
    Ghosh, S. S., Gopinath, P., and Ramesh, A. (2006) Adenoviral vectors: a promising tool for gene therapy, Appl Biochem Biotechnol 133, 9–29.PubMedCrossRefGoogle Scholar
  23. 23.
    Hu, P.-F., Chen, H., Zhong, W., Lin, Y., Zhang, X., Chen, Y.-X., et al. (2009) Adenovirus-mediated transfer of siRNA against PAI-1 mRNA ameliorates hepatic fibrosis in rats, J. Hepatol 51, 102–113.PubMedCrossRefGoogle Scholar
  24. 24.
    Okuda, T., Tagawa, K., Qi, M. L., Hoshio, M., Ueda, H., Kawano, H., et al. (2004) Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo, Brain Res. Mol. Brain Res. 132, 18–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature 415, 331–335.PubMedCrossRefGoogle Scholar
  26. 26.
    Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kockskamper, J., et al. (2009) Long-Term Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy, Circulation 119, 1241–1252.PubMedCrossRefGoogle Scholar
  27. 27.
    Mata-Espinosa, D. A., Mendoza-Rodriguez, V., Aguilar-Leon, D., Rosales, R., Lopez-Casillas, F., and Hernandez-Pando, R. (2008) Therapeutic Effect of Recombinant Adenovirus Encoding Interferon-[gamma] in a Murine Model of Progressive Pulmonary Tuberculosis, Mol. Ther. 16, 1065–1072.PubMedCrossRefGoogle Scholar
  28. 28.
    Happel, K. I., Lockhart, E. A., Mason, C. M., Porretta, E., Keoshkerian, E., Odden, et al. (2005) Pulmonary Interleukin-23 Gene Delivery Increases Local T-Cell Immunity and Controls Growth of Mycobacterium tuberculosis in the Lungs, Infect. Immun. 73, 5782–5788.Google Scholar
  29. 29.
    Goncalves, M. A. (2005) Adeno-associated virus: from defective virus to effective vector, Virol. J. 2, 43.PubMedCrossRefGoogle Scholar
  30. 30.
    Büning, H., Braun-Falco, M., and Hallek, M. (2004) Progress in the use of adeno-associated viral vectors for gene therapy, Cells Tissues Organs 177, 139–150.PubMedCrossRefGoogle Scholar
  31. 31.
    Ding, W., Zhang, L., Yan, Z., and Engelhardt, J. F. (2005) Intracellular trafficking of adeno-associated viral vectors, Gene Ther. 12, 873–880.PubMedCrossRefGoogle Scholar
  32. 32.
    McCarty, D. M., Fu, H., Monahan, P. E., Toulson, C. E., Naik, P., and Samulski, R. J. (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo, Gene Ther. 10, 2112–2118.PubMedCrossRefGoogle Scholar
  33. 33.
    Kotin, R. M., Menninger, J. C., Ward, D. C., and Berns, K. I. (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter, Genomics 10, 831–834.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J., et al. (1998) Adeno-associated virus vectors can be efficiently produced without helper virus, Gene Ther. 5, 938–945.PubMedCrossRefGoogle Scholar
  35. 35.
    Russell, D. W., and Kay, M. A. (1999) Adeno-associated virus vectors and hematology, Blood 94, 864–874.PubMedGoogle Scholar
  36. 36.
    Coura Rdos, S., and Nardi, N. B. (2007) The state of the art of adeno-associated virus-based vectors in gene therapy, Virol. J. 4, 99.PubMedCrossRefGoogle Scholar
  37. 37.
    McCarty, D. M., Monahan, P. E., and Samulski; R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254.Google Scholar
  38. 38.
    Galeano, M., Deodato, B., Altavilla, D., Squadrito, G., Seminara, P., Marini, H., et al. (2003) Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury, Crit. Care Med. 31, 1017–1025.PubMedCrossRefGoogle Scholar
  39. 39.
    Deodato, B., Arsic, N., Zentilin, L., Galeano, M., Santoro, D., Torre, V., et al. (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing, Gene Ther. 9, 777–785.PubMedCrossRefGoogle Scholar
  40. 40.
    Galeano, M., Deodato, B., Altavilla, D., Cucinotta, D., Arsic, N., Marini, H., et al. (2003) Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse, Diabetologia 46, 546–555.PubMedGoogle Scholar
  41. 41.
    Paterna, J. C., and Bueler, H. (2002) Recombinant adeno-associated virus vector design and gene expression in the mammalian brain, Methods 28, 208–218.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart, Nat. Biotechnol. 23, 321–328.PubMedCrossRefGoogle Scholar
  43. 43.
    Martin, K. R., Klein, R. L., and Quigley, H. A. (2002) Gene delivery to the eye using adeno-associated viral vectors, Methods 28, 267–275.PubMedCrossRefGoogle Scholar
  44. 44.
    Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J. Virol. 72, 1438–1445.PubMedGoogle Scholar
  45. 45.
    Di Pasquale, G., Davidson, B. L., Stein, C. S., Martins, I., Scudiero, D., Monks, A., et al. (2003) Identification of PDGFR as a receptor for AAV-5 transduction, Nat. Med. 9, 1306–1312.PubMedCrossRefGoogle Scholar
  46. 46.
    Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., et al. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J. Virol. 76, 791–801.PubMedCrossRefGoogle Scholar
  47. 47.
    Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samulski, R. J., and Walsh, C. E. (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors, Mol. Ther. 2, 619–623.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc. Natl. Acad. Sci. USA 99, 11854–11859.PubMedCrossRefGoogle Scholar
  49. 49.
    Halbert, C. L., Allen, J. M., and Miller, A. D. (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors, J. Virol. 75, 6615–6624.PubMedCrossRefGoogle Scholar
  50. 50.
    Hauck, B., Chen, L., and Xiao, W. (2003) Generation and characterization of chimeric recombinant AAV vectors, Mol. Ther. 7, 419–425.PubMedCrossRefGoogle Scholar
  51. 51.
    Stachler, M. D., and Bartlett, J. S. (2006) Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells, Gene Ther. 13, 926–931.PubMedGoogle Scholar
  52. 52.
    Osten, P., Grinevich, V., and Cetin, A. (2007) Viral vectors: a wide range of choices and high levels of service, Handb. Exp. Pharmacol., 177–202.Google Scholar
  53. 53.
    Moss, R. B., Rodman, D., Spencer, L. T., Aitken, M. L., Zeitlin, P. L., Waltz, D., et al. (2004) Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial, Chest 125, 509–521.PubMedCrossRefGoogle Scholar
  54. 54.
    Wagner, J. A., Messner, A. H., Moran, M. L., Daifuku, R., Kouyama, K., Desch, J. K., et al. (1999) Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus, Laryngoscope 109, 266–274.PubMedCrossRefGoogle Scholar
  55. 55.
    Moss, R. B., Milla, C., Colombo, J., Accurso, F., Zeitlin, P. L., Clancy, J. P., et al. (2007) Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial, Hum. Gene Ther. 18, 726–732.PubMedCrossRefGoogle Scholar
  56. 56.
    Mount, J. D., Herzog, R. W., Tillson, D. M., Goodman, S. A., Robinson, N., McCleland, M. L., et al. (2002) Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy, Blood 99, 2670–2676.PubMedCrossRefGoogle Scholar
  57. 57.
    Manno, C. S., Pierce, G. F., Arruda, V. R., Glader, B., Ragni, M., Rasko, J. J., et al. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med. 12, 342–347.PubMedCrossRefGoogle Scholar
  58. 58.
    McPhee, S. W., Janson, C. G., Li, C., Samulski, R. J., Camp, A. S., Francis, J., et al. (2006) Immune responses to AAV in a phase I study for Canavan disease, J. Gene Med. 8, 577–588.PubMedCrossRefGoogle Scholar
  59. 59.
    Crystal, R. G., Sondhi, D., Hackett, N. R., Kaminsky, S. M., Worgall, S., Stieg, P., et al. (2004) Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of ­children with late infantile neuronal ceroid lipofuscinosis, Hum. Gene Ther. 15, 1131–1154.Google Scholar
  60. 60.
    During, M. J., Kaplitt, M. G., Stern, M. B., and Eidelberg, D. (2001) Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation, Hum. Gene Ther. 12, 1589–1591.PubMedGoogle Scholar
  61. 61.
    Flotte, T. R., Brantly, M. L., Spencer, L. T., Byrne, B. J., Spencer, C. T., Baker, D. J., et al. (2004) Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults, Hum. Gene Ther. 15, 93–128.PubMedCrossRefGoogle Scholar
  62. 62.
    Coffin, J. M., Hughes, S. H., and Varmus, H. E. (1997) Retroviruses, Cold Spring Harbor Laboratory Press.Google Scholar
  63. 63.
    Zhang, X., and Godbey, W. T. (2006) Viral vectors for gene delivery in tissue engineering, Adv. Drug Deliv. Rev. 58, 515–534.PubMedCrossRefGoogle Scholar
  64. 64.
    Buchschacher, G. L. (2004) Safety conside­rations associated with development and clinical application of lentiviral vector ­systems for gene transfer, Curr. Genom. 5, 19–35.CrossRefGoogle Scholar
  65. 65.
    Buchschacher, G. L., Jr. (2001) Introduction to retroviruses and retroviral vectors, Somat. Cell Mol. Genet. 26, 1–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Hu, W. S., and Pathak, V. K. (2000) Design of retroviral vectors and helper cells for gene therapy, Pharmacol. Rev. 52, 493–511.PubMedGoogle Scholar
  67. 67.
    Robbins, P. D., Tahara, H., and Ghivizzani, S. C. (1998) Viral vectors for gene therapy, Trends Biotechnol. 16, 35–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Charles, H. R., Donna, D. S., Shin-Tai, C., Thomas, A. L., Matilda, H. C. S., Jon, E. W., et al. (2008) Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat, J. Gene Med. 10, 229–241.CrossRefGoogle Scholar
  69. 69.
    Phillips, J. E., and García, A. J. (2008) Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype, Methods Mol. Biol. 433, 333–354.PubMedCrossRefGoogle Scholar
  70. 70.
    Li, Y., Tew, S. R., Russell, A. M., Gonzalez, K. R., Hardingham, T. E., and Hawkins, R. E. (2004) Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9, Tissue Eng. 10, 575–584.PubMedCrossRefGoogle Scholar
  71. 71.
    Tew, S. R., Li, Y., Pothacharoen, P., Tweats, L. M., Hawkins, R. E., and Hardingham, T. E. (2005) Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes, Osteoarthritis Cartilage 13, 80–89.PubMedCrossRefGoogle Scholar
  72. 72.
    Yu, H., Eton, D., Wang, Y., Kumar, S. R., Tang, L., Terramani, T. T., et al. (1999) High efficiency in vitro gene transfer into vascular tissues using a pseudotyped retroviral vector without pseudotransduction, Gene Ther. 6, 1876–1883.PubMedCrossRefGoogle Scholar
  73. 73.
    Chinen, J., Davis, J., De Ravin, S. S., Hay, B. N., Hsu, A. P., Linton, G. F., et al. (2007) Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency, Blood 110, 67–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Gaspar, H. B., Parsley, K. L., Howe, S., King, D., Gilmour, K. C., Sinclair, J., et al. (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector, Lancet 364, 2181–2187.PubMedCrossRefGoogle Scholar
  75. 75.
    Cavazzana-Calvo, M., and Fischer, A. (2007) Gene therapy for severe combined immunodeficiency: are we there yet? J. Clin. Invest. 117, 1456–1465.PubMedCrossRefGoogle Scholar
  76. 76.
    Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272, 263–267.PubMedCrossRefGoogle Scholar
  77. 77.
    Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., et al. (1998) A third-generation lentivirus vector with a conditional packaging system, J. Virol. 72, 8463–8471.PubMedGoogle Scholar
  78. 78.
    Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery, J. Virol. 72, 9873–9880.PubMedGoogle Scholar
  79. 79.
    Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V., and Cullen, B. R. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA, Nature 338, 254–257.PubMedCrossRefGoogle Scholar
  80. 80.
    Heinzinger, N. K., Bukinsky, M. I., Haggerty, S. A., Ragland, A. M., Kewalramani, V., Lee, M. A., et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells, Proc. Natl. Acad. Sci. USA 91, 7311–7315.PubMedCrossRefGoogle Scholar
  81. 81.
    Feng, S., and Holland, E. C. (1988) HIV-1 tat trans-activation requires the loop sequence within tar, Nature 334, 165–167.PubMedCrossRefGoogle Scholar
  82. 82.
    Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector, J. Virol. 72, 8150–8157.PubMedGoogle Scholar
  83. 83.
    Wiznerowicz, M., and Trono, D. (2005) Harnessing HIV for therapy, basic research and biotechnology, Trends Biotechnol. 23, 42–47.PubMedCrossRefGoogle Scholar
  84. 84.
    Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science 295, 868–872.PubMedCrossRefGoogle Scholar
  85. 85.
    Warnock, J. N., Merten, O.-W., and Al-Rubeai, M. (2006) Cell culture processes for the production of viral vectors for gene therapy purposes, Cytotechnology 50, 141–162.PubMedCrossRefGoogle Scholar
  86. 86.
    D’Costa, J., Mansfield, S. G., and Humeau, L. M. (2009) Lentiviral vectors in clinical trials: Current status, Curr. Opin. Mol. Ther. 11, 554–564.PubMedGoogle Scholar
  87. 87.
    Levine, B. L., Humeau, L. M., Boyer, J., MacGregor, R. R., Rebello, T., Lu, X., et al. (2006) Gene transfer in humans using a conditionally replicating lentiviral vector, Proc. Natl. Acad. Sci. USA 103, 17372–17377.PubMedCrossRefGoogle Scholar
  88. 88.
    Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C. C., Veres, G., Schmidt, M., Kutschera, I., et al. (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy, Science 326, 818–823.PubMedCrossRefGoogle Scholar
  89. 89.
    Williams, D. A. (2009) ESCGT 2008: progress in clinical gene therapy, Mol Ther 17, 1–2.PubMedCrossRefGoogle Scholar
  90. 90.
    Bank, A., Dorazio, R., and Leboulch, P. (2005) A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia, Ann. N Y Acad. Sci. 1054, 308–316.PubMedCrossRefGoogle Scholar
  91. 91.
    Li, M. J., Kim, J., Li, S., Zaia, J., Yee, J. K., Anderson, J., et al. (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy, Mol. Ther. 12, 900–909.PubMedCrossRefGoogle Scholar
  92. 92.
    Chhabra, A., Yang, L., Wang, P., Comin-Anduix, B., Das, R., Chakraborty, N. G., et al. (2008) CD4  +  CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model, J. Immunol. 181, 1063–1070.PubMedGoogle Scholar
  93. 93.
    Tjia, S. T., zu Altenschildesche, G. M., and Doerfler, W. (1983) Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells, Virology 125, 107–117.Google Scholar
  94. 94.
    Volkman, L. E., and Goldsmith, P. A. (1983) In Vitro Survey of Autographa californica Nuclear Polyhedrosis Virus Interaction with Nontarget Vertebrate Host Cells, Appl. Environ. Microbiol. 45, 1085–1093.PubMedGoogle Scholar
  95. 95.
    Smith, G. E., Summers, M. D., and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector, Mol. Cell Biol. 3, 2156–2165.PubMedGoogle Scholar
  96. 96.
    Boyce, F. M., and Bucher, N. L. (1996) Baculovirus-mediated gene transfer into mammalian cells, Proc. Natl. Acad. Sci. USA 93, 2348–2352.PubMedCrossRefGoogle Scholar
  97. 97.
    Condreay, J. P., Witherspoon, S. M., Clay, W. C., and Kost, T. A. (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector, Proc. Natl. Acad. Sci. USA 96, 127–132.PubMedCrossRefGoogle Scholar
  98. 98.
    Hofmann, C., Lehnet, W., and Strauss, M. (1998) The baculovirus system for gene delivery into hepatocytes, Gene Ther. Mol. Biol. 1, 231–239.Google Scholar
  99. 99.
    Cohen, D. P. A., Marek, M., Davies, B. G., Vlak, J. M., and van Oers, M. M. (2009) Encyclopedia of Autographa californica nucleopolyhedrovirus genes, Virologica Sinica 24, 359–414.CrossRefGoogle Scholar
  100. 100.
    Long, G., Pan, X., Kormelink, R., and Vlak, J. M. (2006) Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis, J. Virol. 80, 8830–8833.PubMedCrossRefGoogle Scholar
  101. 101.
    Matilainen, H., Rinne, J., Gilbert, L., Marjomaki, V., Reunanen, H., and Oker-Blom, C. (2005) Baculovirus entry into human hepatoma cells, J. Virol. 79, 15452–15459.PubMedCrossRefGoogle Scholar
  102. 102.
    van Loo, N. D., Fortunati, E., Ehlert, E., Rabelink, M., Grosveld, F., and Scholte, B. J. (2001) Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids, J. Virol. 75, 961–970.PubMedCrossRefGoogle Scholar
  103. 103.
    Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors, Proc. Natl. Acad. Sci. USA 92, 10099–10103.PubMedCrossRefGoogle Scholar
  104. 104.
    Salminen, M., Airenne, K. J., Rinnankoski, R., Reimari, J., Valilehto, O., Rinne, J., et al. (2005) Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes, J. Virol. 79, 2720–2728.PubMedCrossRefGoogle Scholar
  105. 105.
    Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., et al. (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus, J. Virol. 79, 2847–2858.PubMedCrossRefGoogle Scholar
  106. 106.
    Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat. Biotechnol. 23, 567–575.PubMedCrossRefGoogle Scholar
  107. 107.
    Ho, Y. C., Chung, Y. C., Hwang, S. M., Wang, K. C., and Hu, Y. C. (2005) Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells,J. Gene Med. 7, 860–868.Google Scholar
  108. 108.
    Sung, L. Y., Lo, W. H., Chiu, H. Y., Chen, H. C., Chung, C. K., Lee, H. P., et al. (2007) Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression, Biomaterials 28, 3437–3447.PubMedCrossRefGoogle Scholar
  109. 109.
    Strauss, R., Huser, A., Ni, S., Tuve, S., Kiviat, N., Sow, P. S., et al. (2007) Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein, Mol. Ther. 15, 193–202.PubMedCrossRefGoogle Scholar
  110. 110.
    Cheshenko, N., Krougliak, N., Eisensmith, R. C., and Krougliak, V. A. (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus, Gene Ther. 8, 846–854.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim, Y.-K., Choi, J. Y., Jiang, H.-L., Arote, R., Jere, D., Cho, M.-H., et al. (2009) Hybrid of baculovirus and galactosylated PEI for efficient gene carrier, Virology 387, 89–97.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang, Y., Lo, S.-L., Yang, J., Yang, J., Goh, S. S. L., Wu, C., et al. (2009) Polyethylenimine coating to produce serum-resistant baculoviral vectors for in vivo gene delivery, Biomaterials 30, 5767–5774.PubMedCrossRefGoogle Scholar
  113. 113.
    Airenne, K. J., Hiltunen, M. O., Turunen, M. P., Turunen, A. M., Laitinen, O. H., Kulomaa, M. S., et al. (2000) Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery, Gene Ther. 7, 1499–1504.PubMedCrossRefGoogle Scholar
  114. 114.
    Hoare, J., Waddington, S., Thomas, H. C., Coutelle, C., and McGarvey, M. J. (2005) Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice, J. Gene Med. 7, 325–333.PubMedCrossRefGoogle Scholar
  115. 115.
    Huser, A., Rudolph, M., and Hofmann, C. (2001) Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors, Nat. Biotechnol. 19, 451–455.PubMedCrossRefGoogle Scholar
  116. 116.
    Lehtolainen, P., Tyynela, K., Kannasto, J., Airenne, K. J., and Yla-Herttuala, S. (2002) Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo, Gene Ther. 9, 1693–1699.PubMedCrossRefGoogle Scholar
  117. 117.
    Wang, C. Y., and Wang, S. (2005) Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain, Hum. Gene Ther. 16, 1219–1226.PubMedCrossRefGoogle Scholar
  118. 118.
    Pieroni, L., Maione, D., and La Monica, N. (2001) In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors, Hum. Gene Ther. 12, 871–881.PubMedCrossRefGoogle Scholar
  119. 119.
    Baron, S. (1996) Medical Microbiology, 4th ed., The University of Texas Medical Branch at Galveston.Google Scholar
  120. 120.
    Kufe, D. W., Frei III, E., Holland, J. F., Weichselbaum, R. R., Pollock, R. E., Bast, R. C., et al. (2006) Cancer Medicine, 7th ed., BC Decker, Columbia.Google Scholar
  121. 121.
    Casper, D., Engstrom, S. J., Mirchandani, G. R., Pidel, A., Palencia, D., Cho, P. H., et al. (2002) Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer, Cell Transplant. 11, 331–349.PubMedGoogle Scholar
  122. 122.
    Mackett, M., Smith, G. L., and Moss, B. (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector, Proc. Natl. Acad. Sci. USA 79, 7415–7419.PubMedCrossRefGoogle Scholar
  123. 123.
    Panicali, D., and Paoletti, E. (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus, Proc. Natl. Acad. Sci. USA 79, 4927–4931.PubMedCrossRefGoogle Scholar
  124. 124.
    Gomez, C. E., Najera, J. L., Krupa, M., and Esteban, M. (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer, Curr. Gene Ther. 8, 97–120.PubMedCrossRefGoogle Scholar
  125. 125.
    Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., et al. (1992) NYVAC: a highly attenuated strain of vaccinia virus, Virology 188, 217–232.PubMedCrossRefGoogle Scholar
  126. 126.
    Moss, B. (2006) Poxvirus entry and membrane fusion, Virology 344, 48–54.PubMedCrossRefGoogle Scholar
  127. 127.
    Antoine, G., Scheiflinger, F., Dorner, F., and Falkner, F. G. (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses, Virology 244, 365–396.PubMedCrossRefGoogle Scholar
  128. 128.
    Upton, C., Slack, S., Hunter, A. L., Ehlers, A., and Roper, R. L. (2003) Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome, J. Virol. 77, 7590–7600.Google Scholar
  129. 129.
    Tolonen, N., Doglio, L., Schleich, S., and Krijnse Locker, J. (2001) Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei, Mol. Biol. Cell. 12, 2031–2046.PubMedGoogle Scholar
  130. 130.
    Moss, B. (2001) Poxviridae: the viruses and their replication, in Fields Virology 4th ed., pp 2849-2883, Lippincott/The Williams & Wilkins Co, Philadelphia.Google Scholar
  131. 131.
    Fauci, A. S. (2001) Infectious diseases: considerations for the 21st century, Clin. Infect. Dis. 32, 675–685.PubMedCrossRefGoogle Scholar
  132. 132.
    Morens, D. M., Folkers, G. K., and Fauci, A. S. (2004) The challenge of emerging and re-emerging infectious diseases, Nature 430, 242–249.PubMedCrossRefGoogle Scholar
  133. 133.
    Sutter, G., and Staib, C. (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery, Curr. Drug Targets Infect. Disord. 3, 263–271.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011 2011

Authors and Affiliations

  • James N. Warnock
  • Claire Daigre
  • Mohamed Al-Rubeai
    • 1
  1. 1.School of Chemical & Bioprocess Engineering and Conway Institute for Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland

Personalised recommendations