Abstract
Telomeres, the specialized DNA-protein complexes found at the termini of all linear eukaryotic chromosomes, protect chromosomes from degradation and end-to-end fusion. The protection of telomeres 1 (POT1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection and involved in telomere length regulation. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Through structural and biochemical studies, we have demonstrated that human TPP1 is the missing human homolog of the β subunit of protozoan telomere end-binding-protein-complex (TEBPα-TEBPβ). Therefore, capping of telomeres by a TEBPα-TEBPβ/POT1-TPP1 dimer is more evolutionarily conserved than that had been expected. In addition, we also discovered that the human POT1-TPP1 complex is a processivity factor for telomerase.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blackburn, E. H. (2001) Switching and signaling at the telomere, Cell 106, 661–673.
Cech, T. R. (2004) Beginning to understand the end of the chromosome, Cell 116, 273–279.
de Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev 19, 2100–2110.
Zhong, Z., Shiue, L., Kaplan, S., and de Lange, T. (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro, Mol Cell Biol 12, 4834–4843.
Bilaud, T., Brun, C., Ancelin, K., Koering, C. E., Laroche, T., and Gilson, E. (1997) Telomeric localization of TRF2, a novel human telobox protein, Nat Genet 17, 236–239.
Broccoli, D., Smogorzewska, A., Chong, L., and de Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat Genet 17, 231–235.
Baumann, P., and Cech, T. R. (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans, Science 292, 1171–1175.
Baumann, P., Podell, E., and Cech, T. R. (2002) Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing, Mol Cell Biol 22, 8079–8087.
Tani, A., and Murata, M. (2005) Alternative splicing of Pot1 (Protection of telomere)-like genes in Arabidopsis thaliana, Genes Genet Syst 80, 41–48.
Wei, C., and Price, C. M. (2004) Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1, Mol Cell Biol 24, 2091–2102.
Wu, L., Multani, A. S., He, H., Cosme-Blanco, W., Deng, Y., Deng, J. M., Bachilo, O., Pathak, S., Tahara, H., Bailey, S. M., Behringer, R. R., and Chang, S. (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres, Cell 126, 49–62.
Hockemeyer, D., Daniels, J. P., Takai, H., and de Lange, T. (2006) Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres, Cell 126, 63–77.
Lei, M., Podell, E. R., Baumann, P., and Cech, T. R. (2003) DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA, Nature 426, 198–203.
Lei, M., Podell, E. R., and Cech, T. R. (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection, Nat Struct Mol Biol 11, 1223–1229.
Houghtaling, B. R., Cuttonaro, L., Chang, W., and Smith, S. (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2, Curr Biol 14, 1621–1631.
Liu, D., Safari, A., O’Connor, M. S., Chan, D. W., Laegeler, A., Qin, J., and Songyang, Z. (2004) PTOP interacts with POT1 and regulates its localization to telomeres, Nat Cell Biol 6, 673–680.
Ye, J. Z., Hockemeyer, D., Krutchinsky, A. N., Loayza, D., Hooper, S. M., Chait, B. T., and de Lange, T. (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex, Genes Dev 18, 1649–1654.
Wang, F., Podell, E. R., Zaug, A. J., Yang, Y., Baciu, P., Cech, T. R., and Lei, M. (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor, Nature 445, 506–510.
Chen, J. L., and Greider, C. W. (2003) Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility, EMBO J 22, 304–314.
Acknowledgments
The authors thank N. F. Lue (Weill Medical College of Cornell University) for the His-SUMO protein expression vector, Z. Songyang (Baylor College of Medicine) and T. de Lange (The Rockefeller University) for TPP1 cDNA, J. L. Chen (Arizona State University), and C. W. Greider (The Johns Hopkins University School of Medicine) for the human TERT and TER plasmids. We also would like to thank T. C. Cech, E. R. Podell, and A. J. Zaug for the development of the human telomerase activity assay. M.L. is a Howard Hughes Medical Institute Early Career Scientist. This work was supported by an NIH grant (GM 083015-01 to M.L.), an American Cancer Society Research Scholar Award (to M.L.), and a Sidney Kimmel Scholar Award (to M.L.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Wang, F., Lei, M. (2011). Human Telomere POT1-TPP1 Complex and Its Role in Telomerase Activity Regulation. In: Songyang, Z. (eds) Telomeres and Telomerase. Methods in Molecular Biology, vol 735. Humana Press. https://doi.org/10.1007/978-1-61779-092-8_17
Download citation
DOI: https://doi.org/10.1007/978-1-61779-092-8_17
Published:
Publisher Name: Humana Press
Print ISBN: 978-1-61779-091-1
Online ISBN: 978-1-61779-092-8
eBook Packages: Springer Protocols